
71

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

DOI: 10.15308/Sinteza-2025-71-77

A PLATFORM-AGNOSTIC DEPLOYMENT STRATEGY
LEVERAGING REAL-TIME HOST METRICS FOR
OPTIMIZED RESOURCE UTILIZATION

Abstract:
Many environments for application development face challenges due to inef-
ficient resource utilization and a high degree of vendor lock-in when using
cloud services, which limits flexibility and increases user costs. Traditional
methods often rely on fixed infrastructures that can lead to host misconfigura-
tions and suboptimal resource usage. In response to these issues, we propose
a platform-agnostic application deployment tool that harnesses real-time
host metrics to optimize resource allocation and enhance deployment ef-
ficiency. The solution features a robust architecture with a client interface,
an orchestrator service, a metrics collection service, a dedicated management
service, and a proxy service. The platform dynamically configures individual
host environments based on specific application requirements by leveraging
user-configurable tags and Ansible automation scripts. It further employs host
performance metrics, such as CPU and RAM usage and network throughput
collected via the metrics collection service, to intelligently select the least uti-
lized hosts for application deployment. Our automated deployment strategy,
based on host resource utilization, helps us avoid the traditional issues of
having to configure each host manually and not having to be vendor-locked
to a specific cloud provider, paving the way for a more flexible and efficient
resource utilization.

Keywords:
Platform-agnostic Deployment, Ansible, Metrics-based Resource Allocation,
Automated Configuration.

INTRODUCTION

Deploying applications across multiple hosts—whether virtual
machines or bare-metal systems—remains a formidable challenge in
modern infrastructures. Prior research indicates that inefficient resource
utilization is a persistent problem [1]. In addition, containerized envi-
ronments often suffer from host misconfigurations that adversely affect
performance [2]. Traditional deployment methods that rely on manual
setup or basic automation scripts lead to further issues such as subopti-
mal resource usage, insufficient monitoring, and security inconsistencies
[3]. Independent studies have shown that these limitations can result in
frequent deployment failures [4]. While cloud providers offer a stand-
ardized and controlled platform for deploying applications, thus remov-
ing the previously mentioned problems, the associated costs and vendor
lock-in possibility provide considerable issues with this approach [5].

COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE SESSION

Teodor Petrović*,
[0009-0008-7186-2552]

Aleksa Vidaković,
[0009-0005-3527-011X]

Petar Kresoja,
[0009-0008-3343-1540]
Nikola Savanović,
[0000-0001-9670-7374]

Saša Adamović
[0000-0002-2875-685X]

Singidunum University,
Belgrade, Srebia

Correspondence:
Teodor Petrović

e-mail:
tpetrovic@singidunum.ac.rs

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15308/Sinteza-2025-71-77
https://doi.org/10.15308/Sinteza-2025-71-77
https://orcid.org/0009-0008-7186-2552
https://orcid.org/0000-0002-5511-2531
https://orcid.org/0009-0005-3527-011X
https://orcid.org/0009-0008-3343-1540
https://orcid.org/0000-0001-9670-7374
https://orcid.org/0000-0002-2875-685X

72

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Computer Science and
Artificial Intelligence Session

To address these challenges, we propose a dynamic,
platform-agnostic deployment tool that streamlines
application management workflows using available
resources. This tool enables users to register their host
machines and specify resource and service requirements
via an intuitive tagging mechanism. By integrating au-
tomated configuration management with continuous,
real-time monitoring of host performance, the tool
minimizes manual errors and resource wastage while
dynamically selecting the optimal host based on cur-
rent utilization. In doing so, it effectively mitigates is-
sues such as host misconfigurations and vendor lock-
in, offering a flexible, scalable, and secure deployment
framework.

2. RELATED CONTENT

Previous studies in this field have highlighted sig-
nificant challenges concerning deploying and managing
host resources. Tools such as Kubernetes and Docker
Swarm provide robust container orchestration capa-
bilities; however, they typically require complex con-
figuration patterns. Research has demonstrated that
these platforms often lack integrated real-time host re-
source metrics [6] and may not adapt well to fluctuating
workloads [7]. Similarly, while Ansible simplifies host
configuration through its agentless design, it does not
inherently support dynamic, resource-based decision-
making, which limits its adaptability in rapidly chang-
ing environments. While these platforms have advanced
the way containerized applications are managed, their
static configuration models sometimes fail to adapt to
dynamic resource fluctuations and evolving workload
demands in situations where businesses rely on their in-
frastructure (private or hybrid cloud). This rigidity can
lead to inefficient resource allocation and may result in
unexpected performance bottlenecks per host machine
and the organization as a whole.

Ansible, known for its simplicity and agentless op-
eration, has become a popular choice for host configura-
tion management. Despite its ease of use, Ansible tradi-
tionally does not incorporate dynamic, resource-based
decision-making, essential for optimizing deployments
in highly variable environments. As a result, many de-
ployment scenarios still require manual reconfiguration
of the playbook files, which can hinder the system's abil-
ity to adapt to evolving infrastructure conditions.

Monitoring systems like Prometheus [8] and Elastic
Stack (Kibana) [9] have been instrumental in offering
deep insights into application and host performance.

They provide detailed graphs and metrics for visualiza-
tion and analytics capabilities that allow administrators
to track host machines with critical performance status-
es over time. However, these systems generally operate
in isolation from the deployment process, creating a dis-
connect between the host monitoring and its automated
configuration. To bridge this gap, recent studies have
explored integrating real-time performance metrics di-
rectly into deployment workflows.

In contrast to these existing solutions, our approach
merges real-time monitoring with automated deploy-
ment, as demonstrated in recent studies [10]. Addi-
tionally, the work by Vankayalapati et al. (2022) [10]
supports the concept of predictive scaling through inte-
grated monitoring and orchestration.

Our approach builds upon this research by seamless-
ly integrating real-time host performance metrics with
a custom automated deployment process. By doing so,
we significantly enhance the decision-making process
regarding host selection and per-host resource utiliza-
tion, ensuring that deployments are not only automated
but also optimized for current infrastructure conditions.
This integration addresses the critical gaps left by tradi-
tional tools, offering a more adaptive, efficient, secure,
and reliable deployment solution. Unlike these existing
solutions, which typically rely on static configurations
and operate in isolation from real-time monitoring, our
approach leverages dynamic metrics to make informed,
adaptive deployment decisions, thereby enhancing re-
source utilization and system responsiveness.

3. METHODOLOGY

Our deployment solution tool is built upon a com-
prehensive system that integrates several intercon-
nected services to deliver an end-to-end application
deployment process. The approach begins with an in-
tuitive user interface that allows system administrators
to register host systems (BareMetal or VM machines).
During this registration process, each host is assigned
descriptive tags that indicate the specific services and
configurations required from it, effectively summarizing
its intended role and capabilities (Docker, Kubernetes,
ingress, egress, storage). This tagging mechanism lays
the groundwork for an automated deployment process
that tailors to specific hosts, preparing them to meet di-
verse deployment needs.

http://sinteza.singidunum.ac.rs

73

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Computer Science and
Artificial Intelligence Sessionn

Upon host registration, regardless of assigned tags, a
metric collection service is installed as part of the default
configuration. Simultaneously, each host is automati-
cally enrolled in our DNS system. Using DNS names
instead of relying on static IP addresses provides a more
robust and flexible way to manage our deployment in-
frastructure. Using DNS allows us to update host loca-
tions or configurations without requiring changes to
specific applications or service configurations, improv-
ing resilience and reducing management overhead.

Once these foundational configurations are com-
plete, the backend service dynamically generates con-
figuration scripts tailored to each host's designated role
or roles, as determined by their tags. These scripts auto-
mate the subsequent setup process, significantly reduc-
ing manual intervention and the risk of human error
or misconfiguration. By leveraging these dynamically
generated scripts alongside the standardized metric col-
lection and DNS enrolment, we ensure that each host
is optimally and securely configured according to its
unique tag profile.

Simultaneously, a metrics collection mechanism
continuously gathers real-time performance data from
every registered host. Key performance metrics—such as
CPU, RAM usage, and network activity—are monitored
without interruption. This continuous data flow is criti-
cal, as it maintains an accurate, up-to-date view of all
host resource utilization across the entire system infra-
structure. The collected metrics serve as the foundation
for the system's decision-making process.

At the heart of the system lies the management node,
which is responsible for orchestrating the deployment
process and making calculated decisions based on the
latest performance data. When a deployment request
is initiated, the management node retrieves the current
metrics from the log collection service, filters, and ana-
lyzes them to determine the optimal host for a specific
application deployment. It employs a decision-making
process that calculates the average resource utilization
across available hosts, in combination with the applica-
tion's specific requirements, ultimately selecting the host
with the lowest load to ensure efficient deployment and
optimal application performance.

The management node not only handles the host se-
lection process but also oversees the entire orchestration
process, from initiating host configuration to finalizing
application deployment. It acts as a central orchestrator,
ensuring that each step of the deployment process from
start to finish is executed in the correct sequence and
that all system components operate in complete harmo-
ny. This coordination is accomplished by pre-defined
decision criteria combined with real-time analytics, al-
lowing the system to adapt dynamically to fluctuating
resource demands and varying host conditions.

In summary, our methodology integrates automated
configuration, continuous real-time monitoring, and
intelligent host selection to create a robust deployment
process. This integrated approach (see Table 1) not only
enhances system reliability and scalability but also di-
rectly addresses challenges such as resource inefficien-
cies and configuration inconsistencies.

Table 1. Service components

Service Name Function Technology Stack

Client Interface
Provides an intuitive UI for host
registration and configuration

React, JavaScript, HTML/CSS

Orchestrator Service
Manages application deployment orchestration

and host selection
Nest.js.

Metrics Collection Service
Gathers real-time performance metrics from

hosts
Elasticsearch, Kibana, Logstash, Metricbeat.

Management Service
Automates host configuration and

deployment using generated Ansible scripts
Python Flask App.

DNS service
Manages domain name resolution and

dynamic DNS records for application access
PowerDNS

Proxy Service
Configures reverse proxy routes for secure

application access
Apache HTTP Server

http://sinteza.singidunum.ac.rs

74

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Computer Science and
Artificial Intelligence Session

4. IMPLEMENTATION

The system's implementation is designed to auto-
mate application deployment by integrating several in-
terconnected components that work in synergy. At its
core, the deployment process begins with a default build
configuration that defines the default parameters of an
application deployment. This build configuration con-
tains the application's git repository URL, branch name,
container's port mappings, volume mounts, network as-
signments, resource limits, restart policies, deployment
order, and most importantly, its tags (CPU intensive,
RAM intensive, ingress intensive, egress intensive, stor-
age cold, storage hot, etc.). It serves as a deployment
blueprint, ensuring that each application is deployed in
a consistent and isolated environment while meeting its
specific operational requirements.

4.1. DEFAULT CONFIGURATION EXAMPLE

Listing 1 shows an example of a JSON configura-
tion file that defines the deployment parameters for an
application. For instance, consider the following build
configuration:

As seen in Listing 1, the configuration parameters
are explicitly defined to support automated deployment.
Based on this configuration, the management node

connects to the specified host system using the SSH
key and username, first building the required image for
the application. Container images are named using the
Git project name, with the tag being the branch name
and last commit hash. However, we must note that the
Docker command can create previously non-existent
volumes if specified with the “-v” option, but there is
no command to automatically create new networks.
Therefore, if the requested network does not exist, it
must be first explicitly created before running the con-
tainer. Listing 2 represents the Docker run commands
automatically generated by the management node based
on the configuration provided in Listing 1. Outbound
ports are dynamically chosen on the host system, start-
ing from port 10000, based on the host's available free
ports. The generated Docker command examples look
like this:

In this example, container ports 8080 and 8081 are
mapped to host ports 10000 and 10001, respectively.
The command sets CPU and memory limits, mounts the
specified volume, attaches the container to the primary
network (if networks with the requested name do not
exist, they will be created), and applies the restart policy.

{
 "repository_url": "https://github.com/deploy/web-app",
 "branch": "master"
 "ports": [8080, 8081],
 "tags": ["ingress", "docker"]
 "host": {
 "username": "teodor",
 "domain_name": "nebula-mng.masofinonebula.internal",
 "port": 22,
 "ssh_key_path": "/path/to/key/host_192.168.0.203_Nebula_mng",
 "ip": "192.168.0.203"
 },
 "volumes": [
 { "volumen_name": "SharedData", "container_path": "/home/shared" }
],
 "networks": [
 { "name": "sdn-network", "ip": "dhcp" },
 { "name": "internet", "ip": "172.66.0.10" }
],
 "resources": { "cpu_limit": "0.5", "memory_limit": "512m" },
 "restart_policy": "always",
 "deployment_order": 1
}

Listing 1. Application build config in JSON format

http://sinteza.singidunum.ac.rs

75

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Computer Science and
Artificial Intelligence Sessionn

4.2. DECISION-MAKING ALGORITHM SPECIFICATION

The next step in the deployment process is the selec-
tion of the most suitable host for the proposed appli-
cation. To achieve this, the management node queries
and analyses real-time performance metric data from
currently active hosts, which fit the application needs, to
determine the optimal deployment target. The decision-
making process consists of the following steps:

• Data Collection - Continuously gathering host
performance metrics (e.g., CPU usage, mem-
ory consumption, network throughput) from
all registered hosts. To account for differences
in hardware capacity and application require-
ments, the raw metrics rcpu, rram, rsend and rreceive

are normalized using a min–max normalization
approach (see Equation 1). Specifically, for each
metric, the normalized value is computed as:

Equation 1. Normalization Equation

where Mmetric is the maximum observed value for that
metric.

• Metric Aggregation - For each host instance,
we calculate a utilization score by combining
the normalized metrics. Let CPUnorm, RAnorm,
Sendnorm, Receivenorm denote the normalized val-
ues for CPU, RAM, send bytes, and received
bytes, respectively. The aggregated score S is
then calculated as a weighted average:

Equation 2. Aggregated Score Equation

where wcpu, wram, wsend and wreceive are weights as-
signed to each metric. In our default configuration,
equal weighting is assumed for the base algorithm state.
Consequently, when wcpu=wram=wsend=wreceive=1, the ag-
gregated score simplifies to:

Equation 3. Default Aggregated Score Equation

This calculation can be adjusted based on application-
specific resource demands (e.g., increasing the weights
for CPU and memory if the application is resource-
intensive in these areas).

• Host Ranking - The aggregated scores of spe-
cific hosts that fit the application needs are com-
pared. The host with the lowest overall score is
identified, indicating the most readily available
host that can handle the new deployment.

• Decision Execution - If the build config does
not specify a target host, automatically select
the host with the lowest utilization score. In the
case of a tie or other scenarios (such as deploy-
ment order or historical performance data) are
defined, we can apply custom decision rules to
finalize host selection.

This algorithm ensures that applications are deployed
on the most efficient host available at any given moment,
thereby optimizing resource utilization and maintaining
application stability.

Create the required Docker network
docker network create --internal sdn-network

Deploy the container based on the configuration in Listing 1
docker run -d
 --name web-app-6 \
 --restart always \
 -p 10000:8080 \
 -p 10001:8081 \
 --cpus="0.5" \
 --memory= "512m" \
 -v SharedData:/home/shared \
 --network sdn-network \
 --network internet \
 --ip 172.66.0.10 \
 web-app-docker:main-b37a3cb

Listing 2. Generated Docker run command based on application build config

 =

 =
. + . + . + .

 + + +

 =
4

http://sinteza.singidunum.ac.rs

76

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Computer Science and
Artificial Intelligence Session

5. EXPERIMENTAL SETUP

The evaluation of the proposed deployment tool
was carried out in a controlled environment. The proxy
server was hosted on an Ubuntu Linux VPS equipped
with four cores and 8 GB of RAM. Each host machine
used for deployment had four cores and 8 GB of RAM.
The management and log collection machines were pro-
visioned with four cores and 16 GB of RAM, while the
backend service ran on a machine with four cores and
8 GB of RAM; all these machines operated on Ubuntu
Linux. In addition, all virtual machines—except for the
proxy, which is hosted on a VPS—were managed by a
hypervisor running VMware Workstation. The hyper-
visor featured dual Intel® Xeon® E5-2630 v4 processors
(2.20 GHz, 10 cores, 10 logical processors each) and 226
GB of RAM. The proxy is connected to the private in-
frastructure via a WireGuard VPN, ensuring secure and
reliable communication between the machines.

6. RESULTS

The deployment tool was evaluated in a controlled
environment involving applications with varying re-
source requirements. We tested the decision-making
algorithm on four host instances to assess the efficiency
of our metrics-driven host selection process. As the pre-
viously defined metrics, we generated aggregated scores
based on normalized CPU usage, RAM usage, send
bytes, and received bytes. Moreover, our decision-mak-
ing process is designed in such a way that it can adjust
the weights applied to these metrics based on applica-
tion configuration tags. For instance, if an application
specifies high CPU and RAM requirements, the algo-
rithm increases the weighting factors for these metrics,
ensuring that hosts with lower resource utilization in
these areas are preferred. Similarly, significant ingress
and egress network requirements can lead to higher
send and received byte weights. Table 2 summarizes the
normalized performance metrics and aggregated scores
obtained from our experiments on four host instances.

Based on the results in Table 2, the decision-making
algorithm selected abyss-mng as the best deployment
target because it scored the lowest score (0.25). This out-
come demonstrates that our metrics-driven approach
effectively reduces resource wastage and enhances re-
source utilization, all while aligning with application-
specific resource demands.

7. CONCLUSION

The developed platform-agnostic deployment tool
successfully integrates automated host configuration,
metrics-driven resource allocation, and user-driven
deployment customization. Based on the experimental
results presented in Table 2, our evaluation shows that
the system effectively selects the best host for deploy-
ment by considering host performance metrics—in-
cluding CPU, RAM memory, send bytes, and received
bytes—and dynamically adjusting to application-spe-
cific requirements. In conclusion, we have successfully
achieved our objectives by addressing traditional de-
ployment challenges such as inefficient resource uti-
lization and misconfiguration. The system not only
minimizes resource wastage but also significantly en-
hances deployment stability and scalability, proving its
effectiveness in real-world scenarios. Future work will
focus on integrating machine learning techniques to
further refine the adaptive weighting mechanism and
on scaling the system to handle a larger number of
hosts under varying workload conditions.

Table 2. Normalized Performance Metrics and Aggregated Scores for Host Selection

Host CPU Usage Memory Usage Send Bytes Received Bytes Score

madman-mng 0.50 0.52 0.55 0.56 0.53

abyss-mng 0.28 0.31 0.22 0.18 0.25

nexus-mng 0.40 0.38 0.35 0.33 0.37

nebula -mng 0.42 0.37 0.36 0.35 0.38

http://sinteza.singidunum.ac.rs

77

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Computer Science and
Artificial Intelligence Sessionn

REFERENCES

[1] M. Narasimhulu, D. V. Mounika, P. Varshini, A.
K. and T. R. K. Rao, "Investigating the Impact of
Containerization on the Deployment Process in
DevOps," 2023 2nd International Conference on
Edge Computing and Applications (ICECAA),
pp. 679-685, 2023, https://doi.org/10.1109/ICE-
CAA58104.2023.10212240

[2] M. Abhishek, D. Rao and K. Subrahmanyam,
"Framework to Deploy Containers using Kuber-
netes and CI/CD Pipeline," International Journal
of Advanced Computer Science and Applications,
vol. 13, no. 239, 2022, http://dx.doi.org/10.14569/
IJACSA.2022.0130460

[3] W. M. C. J. T. Kithulwatta, W. U. Wickramaarach-
chi, K. P. N. Jayasena, B. T. G. S. Kumara and R. M.
K. T. Rathnayaka, "Adoption of Docker Containers
as an Infrastructure for Deploying Software Ap-
plications: A Review," Advances on Smart and Soft
Computing, p. 247–259, 29 June 2021, https://doi.
org/10.1007/978-981-16-5559-3_21

[4] M. Dînga, L. Giamattei, A. Guerriero, R. Pietran-
tuono, S. Russo, I. Malavolta, T. Islam, M. Dînga, A.
Koziolek, S. Singh, M. Armbruster, J.-M. Gutierrez-
Martinez, S. Caro-Alvaro, D. Rodriguez, S. Weber,
E. F. Vogelin and F. S. Panojo, "Monitoring tools for
DevOps and microservices: A systematic grey litera-
ture review," Journal of Systems and Software, vol.
208, no. 0164-1212, p. 111906, 16 December 2024,
https://doi.org/10.1016/j.jss.2023.111906

[5] D. Mo, R. Cordingly, D. Chinn and W. Lloyd,
"Addressing Serverless Computing Vendor Lock-In
through Cloud Service Abstraction," 2023 IEEE
International Conference on Cloud Computing Technol-
ogy and Science (CloudCom), pp. 193-199, 2023, htt-
ps://doi.org/10.1109/CloudCom59040.2023.00040

[6] "Cloud resource orchestration in the multi-cloud
landscape: a systematic review of existing frame-
works," Journal of Cloud Computing, vol. 9, no. 49,
2020, https://doi.org/10.1186/s13677-020-00194-7

[7] S. Son and Y. Kwon, "Performance of ELK stack
and commercial system in security log analysis,"
2017 IEEE 13th Malaysia International Conference
on Communications (MICC), pp. 1-6, 2017, http://
dx.doi.org/10.1109/MICC.2017.8311756

[8] Y. Liu, Z. Yu, Q. Wang, H. Mei, G. Song and H.
Li, "Research on cloud-native monitoring system
based on Prometheus," Fourth International Confer-
ence on Sensors and Information Technology (ICSI
2024), vol. 13107, p. 131071B, 2024, https://doi.
org/10.1117/12.3029320.

[9] A. S. Shaji and M. M. George, "Elastic Stack: A
Comprehensive Overview," 2024 IEEE Recent
Advances in Intelligent Computational Sys-
tems (RAICS), pp. 1-5, 27 July 2024, https://doi.
org/10.1109/RAICS61201.2024.10690099

[10] R. K. Vankayalapati, A. Edward and Z. Yasmeen,
"Composable Infrastructure: Towards Dynamic Re-
source Allocation in Multi-Cloud Environments,"
Universal Journal of Computer Sciences and Com-
munications, vol. 1, 2022, https://doi.org/10.31586/
ujcsc.2022.1222

http://sinteza.singidunum.ac.rs

