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CONTROL OF A LIQUID LEVEL SYSTEM BASED ON A 
PROPORTIONAL-SUM CONTROLLER USING WHALE 
OPTIMIZER

Abstract: 
This study is about controlling the liquid level in water tanks, which is one 
of the challenges in the industry.  A nonlinear analytical model is derived 
and validated against linearized continuous-time and discrete-time models, 
demonstrating their equivalence under nominal conditions. The classical 
method for tuning a discrete-time proportional-sum controller was applied, 
with gains tuned via the Ziegler-Nichols method. Additionally, the control-
ler’s parameters were fine-tuned by using the whale optimization algorithm. 
Simulation results for the tank system are presented. While Ziegler-Nichols 
gives a decent base, it can be said that optimization of the controller param-
eters should be recommended when dealing with similar problems in real-life 
situations. Results reveal that the optimized controller reduces the sum of 
squared errors compared to the classical controller, achieving superior accuracy.

Keywords: 
Discrete-Time Systems, Whale Optimization Algorithm, Proportional-
Difference-Sum Controller, Liquid Level Control, Ziegler-Nichols method.

INTRODUCTION

Control of liquid levels in tanks is always an important research topic, 
and a lot of scientific work has been done in order to find an optimal 
solution for this problem. The reason for this constant interest lies in the 
fact that tank plants can be found in multiple industries, like as chemical, 
pharmaceutical, oil and gas, water treatment, and so on.  

When it comes to the utilization of PID-like controllers or their 
discrete-time equivalent proportional-difference-sum (PDS) controllers, 
the main task is to obtain PID parameters that provide good system 
behavior. Choosing proper parameters can significantly improve the 
performance of the system, while poor tuning can worsen it [1]. 
Authors in [1] offer a few conventional methods for tuning a PID con-
troller. Although those methods may achieve the desired performance, 
the authors stated that a lot of effort and experience are needed for defin-
ing parameters. Intelligent controllers can also be used for this purpose. 
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A classical fuzzy logic controller is implemented and 
compared to the PID controller in terms of obtaining 
the desired system response in [2]. Their result gave an 
advantage to the fuzzy controller. However, authors in 
paper [3] state in favor of PID controllers when it comes 
to their simple structure and easy tuning, and recom-
mend using them for liquid level plants without sub-
stantial change in their dynamics. To regulate liquid lev-
els under time-varying system behavior across diverse 
operational regimes, the authors employed a fuzzy-log-
ic-based adaptive PID control scheme with gain sched-
uling. Artificial neural networks also found their appli-
cation for solving this task. Paper [4] offers two different 
liquid level control strategies based on neural networks. 
The initial approach employs an inverse-model-driven 
neurocontroller, whereas the alternative strategy utilizes 
a neural-network-enhanced predictive control scheme. 
Reference [5] combines neural networks and fuzzy logic 
to propose a self-tuning neuro-fuzzy regulator designed 
for liquid level regulation, and it outperformed the fuzzy 
logic controller. The fusion of AI-based methods and 
conventional PID control can be achieved through 
evolutionary optimization strategies to adjust the PID 
gains. For example, in [6], for tuning PID controller pa-
rameters Genetic algorithm is used, and a comparison 
is made with PID tuned via the ZN method. As it was 
expected, including the metaheuristic algorithm brought 
better results. Sometimes, researchers modify the origi-

nal metaheuristic algorithm, like in [7], where the Grey 
Wolf Optimization algorithm is modified for tuning PID. 
The increasing use of optimization algorithms in control-
ling systems is also reflected in their application in sys-
tem modeling, like in [8], where the whale optimization 
algorithm (WOA) is employed to obtain an optimized 
Takagi-Sugeno plant model. Optimization algorithms are 
applicable in areas other than automatic control, such as 
in medicine [9], or in economics [10], where authors have 
used modified WOA to solve various tasks.

This work demonstrates liquid level control using a 
conventional proportional-sum (PS) controller whose pa-
rameters were optimized by the WOA [11]. The results 
are compared with the PS controller, whose parameters 
are obtained using the classical ZN tuning method [12].

2. SYSTEM CHARACTERIZATION

The system's physical characteristics employed in 
this study are presented in Table 1.

The water pump, reservoir, and two similar cylinder 
tanks, one above the other, make up the system. Wa-
ter is pumped vertically from the reservoir to the upper 
tank through a pumping system. We need to control the 
water level of the second tank. The used system diagram 
is shown in Figure 1.

Table 1. Parameter configuration

Parts of the system Labels Numerical values Unit of measurement
Pump flow constant Kp 5.37∙10-6 m3s-1V-1

Diameter of outlet opening 1 Do1 0.47625 ∙10-2 m
Diameter of outlet opening 2 Do2 0.47625 ∙10-2 m
Tank 1 inside diameter D1 4.445 ∙ 10-2 m
Tank 2 inside diameter D2 4.445 ∙ 10-2 m
Gravitational constant g 9.81 ms-2

Figure 1. Liquid level system

http://sinteza.singidunum.ac.rs


65

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Computer Science and  
Artificial Intelligence Sessionn

3. 	MATHEMATICAL MODELING OF THE 
SYSTEM

3.1. ANALYTICAL NONLINEAR MODEL

Tank 1 and Tank 2 are the two subsystems of the 
plant. Pump voltage Vp is the input in tank 1, and tank 
1 water level H1 is the output. One way to express the 
flow into tank 1 is 

Qi1=Kp Vp  .

Equation 1. Flow into tank 1

The outflow velocity Vo1 and the opening cross-
sectional area of tank 1, Ao1, are multiplied to give the 
outflow from tank 1,

Qo1=Ao1 Vo1 .

Equation 2. Outflow from tank 1

The mass balance equation for tank 1 is

Equation 3. Mass balance equation for tank 1

where A1 is the cross-sectional area of tank 1. Out-
flow velocity Vo2 and the opening cross-sectional area 
of tank 2, Ao2, are multiplied to give the outflow from 
tank 2,

Qo2=Ao2 Vo2 .

Equation 4. Outflow from tank 2

The mass conservation equation governing tank 2 is 
expressed as:

Equation 5. Mass balance equation for tank 2

3.2. LINEAR MODELS

Since the water level in reservoir 2 is supposed to 
have a constant nominal value for steady-state condi-
tions, the water level in reservoir 1 and the pump voltage 
also have constant values: 

H1=H1N, H2=H2N, Vp=VpN.

Equation 6. Nominal values for steady-state conditions

The next action to take is to use Taylor's series repre-
sentation at nominal values, Equation 6, to approximate 
nonlinear functions given in Equation 7,

	 (1)

	 (2)

Equation 7. Nonlinear functions

As a result, the following linear differential equations 
are obtained:

		  h1=a1 h1+b1 vp ,		                  (1)

		  h2=a2 h2+b2 h1 .		                  (2)

Equation 8. Linear differential equations

Variables h1, h2, and vp in Equation 8 stand for devia-
tions from nominal values:

		  h1=H1-H1N ,		                  (1)

		  h2=H2-H2N ,		                  (2)

		  vp=Vp-VpN ,		                  (3)

Equation 9. Deviations from nominal values

and coefficients a1, a2, b1 and b2 are calculated using 
the expressions below,

(1)

(2)

Equation 10. Coefficients in linear differential equations

Based on Equation 10 and values from Table 1, linear 
continuous-time models in the form of transfer func-
tions for the first and second reservoirs are easily deter-
mined by applying the Laplace transform to Equation 8.

For determining the linear discrete-time model, a 
sampling period of T = 0.01 s is adopted. The Zero Order 
Hold method is chosen as the discretization method.

Operating conditions and mathematical model rep-
resentations (both continuous-time and discrete-time) 
for Tanks 1 and 2 are provided in Table 2.

Figure 2 represents an open-loop plant output com-
parison of nonlinear with linearized continuous-time 
and discrete-time models when the deviation from a 
nominal pump voltage equals vp=0.4 V. As can be seen 
from Figure 2, the linear continuous-time and linear 
discrete-time models perfectly match, which allows for 
easier design of the controllers in the continuation of 
the work.
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4. CLASSICAL PI AND PS CONTROLLERS

Controller input is error signal e(t),

e(t)=h2d (t)-h2 (t),

Equation 11. Definition of error

and output is control signal u(t) expressed with

Equation 12. PI control algorithm

PI controller s-transfer function equals 

Equation 13. PI controller s-transfer function

The proportional gain KP and integral time constant 
TI define the key parameters of the controller. Although 
the coefficients of PID-type controllers are adjustable 
through various tuning approaches, this study employs 
the established Ziegler-Nichols method to enable direct 
comparison with the metaheuristic optimization tech-
nique. These same controller parameters KP and KI≡KS 
can be applied in the discrete implementation of the 
zero-order proportional-sum controller, whose difference 
equation is described by:

Equation 14. Zero-order proportional-sum controller

By eliminating the sum from the previous equation, 
the final difference equation of the aforementioned PS 
controller is obtained,

u[k+1]=u[k]+KPe[k+1]+(KST-KP)e[k].

Equation 15. The final form of the difference  
equation for the PS controller

4.1. ZIEGLER-NICHOLS PI TUNING METHODOLOGY

The investigated plant represents a stable second-
order system, making it suitable for the Ziegler-Nichols 
open-loop tuning method [12]. The procedure begins 
by obtaining the open-loop step response, which is then 
analyzed to extract the critical tuning parameters: dead 
time L, time constant T1, and process gain K. These 
parameters are derived as illustrated in Figure 3. Table 
3 provides the standard Ziegler-Nichols formulations 
used to compute the proportional and proportional-
integral control parameters.

Table 2. Nominal operating conditions with dynamic models

Tank 1 Tank 2

Nominal water level H1N=0.16 m H2N=0.16 m

Nominal pump voltage VpN=5.8775 V

Linear continuous-time model 0.47625 ∙10-2 m

Linear discrete-time model 4.445 ∙ 10-2 m

Figure 2. Continuous-time and discrete-time linear model accuracy against nonlinear plant behavior
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Lastly, the computed PS controller parameters 
obtained for the linear model are KP=200.8541, KS=16.9559.

5. THE WHALE OPTIMIZATION ALGORITHM

The whale-inspired optimization method has shown 
exceptional performance in addressing diverse nonlinear 
and multimodal challenges. The advantage of this method, 
and all metaheuristic algorithms in general, is the random 
distribution mechanism. This distribution helps avoid 
convergence to local minima. Proposed by Seyedali 
Mirjalili and Andrew Lewis in [11], WOA mimics the 
hunting behavior of humpback whales. It is the leader 
whale’s responsibility to locate the fish. The remaining 
members track directional cues. In every hunt, they all 
take precisely the same position. They hunt in groups 
using a three-phase strategy: encircling prey, a bubble-net 
attack, and an adaptive search. The first phase is to de-
termine the best search agent and update the positions 
of other agents. Using the distance vectors D and X to 
update the position, the mathematical model of this 
stage is:
		  A=2ar-a, C=2r,		                  (1)

		  D=|CX'(t)-X(t)|,	                 (2)

		  X(t+1)=X'(t)-AD,	                 (3)

Equation 16. Mathematical model of the first phase

where a is linearly decreased from 2 to 0 and r is a 
random vector in [0, 1]. A and C are coefficient vectors, 
and t is the current iteration. X is the position vector, 
and X' is the position vector of the best solution so far. 
The fundamental mathematical models that mimic the 
second phase are the spiral path (first calculate the dis-
tance between the whale and prey using helix move-
ment) and the shrinking encircling mechanism 
(define the new position of the searching agent using A). 
Between the original position and the best agent at the 
moment is the agent's new position. The function of this 
strategy is

Equation 17. Mathematical model of the second phase

where D' is the distance between the i-th whale and 
the prey, l is a random value in [-1, 1], b is a constant for 
the shape of the logarithmic spiral, and p is a random 
number in [0, 1]. In order to offer adequate connection 
between the first two phases, the third phase is based 
on the adaptive variation that relies on the value search 
vector A.

In this paper, with a population of 35 agents and 25 
iterations (determined empirically via trial and error), 
each agent (whale) encodes a potential solution (optimal 
parameters KP and KS of the controller). Optimization 
minimizes the sum of squared errors (SSE) as the objective 
function,

Table 3. PID tuning parameters calculated using the Ziegler-Nichols method

KP TI TD

P T1⁄((KL) ) - -

PI (0.9T1)⁄((KL) ) 3.3L -

PID (1.2T1)⁄((KL) ) 2L 0.5L

Figure 3. Tangent method
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Equation 18. Objective function in the form of the  
sum of squared errors

Thirty independent runs were executed. A box plot 
of the objective function values across independent runs 
is shown in Figure 4 (left). The convergence graph of the 
best run is shown in Figure 4 (right).

The parameter values generated by the optimization 
algorithm are KP=299.8767, KS=1.9268.

6. SIMULATION RESULTS

This section presents simulation results demonstrat-
ing the plant's response under the control of the vari-
ous controllers designed earlier. Figure 5 compares the 
level H2 control performance between two distinct PS 
controller implementations. The whale optimization 
algorithm tunes PS controller gains (KP and KS) to out-
perform the classical Ziegler-Nichols method.

Figure 6 displays the change in control signals for 
each applied controller. To enhance plant performance, 
the proposed method generates a superior process input 
compared to Ziegler-Nichols PS control.

SSE =  
2 [ ] . 

Figure 4. Box plot of 30-run fitness values (left) and convergence graph for the best execution (right)

Figure 5. Closed-loop control of H2 level using multiple PS controllers

Figure 6. Simulated control signals for proportional-sum controllers
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To quantitatively demonstrate the optimization’s 
effectiveness, Table 4 presents the calculated sum of 
squared error values using Equation 18 for the chosen 
simulation duration. Additionally, in the same table, 
the system’s dynamic behavior was given through both 
overshoot and settling time (±5% of the steady-state 
value). The comparative results in Table 4 indicate that 
the optimized PS controller outperforms the Ziegler-
Nichols PS controller, as evidenced by the shown values.

7. CONCLUSION

In this paper, an analytical nonlinear model of a cou-
pled tank system was obtained. After that, linear contin-
uous-time and discrete-time models were determined. 
Their comparison was made to show that the linear 
models accurately describe the nonlinear system around 
the chosen nominal point. Subsequently, the coupled-
tank liquid level process is regulated via a discrete-time 
proportional-sum control scheme. Gain values were 
identified employing the Ziegler-Nichols technique 
alongside the modern whale-inspired optimization ap-
proach. To assess the efficacy of their operation, the 
controllers were systematically compared. Performance 
comparison of all results was conducted using the mini-
mum sum of squared errors criterion, percentage over-
shoot, and settling time values. This study highlights the 
efficacy of metaheuristic optimization in enhancing clas-
sical control methods for nonlinear industrial processes. 
Future studies will focus on the implementation of the 
obtained results on a real object under laboratory condi-
tions, as well as on testing other optimization algorithms 
to further improve control performance.

8. ACKNOWLEDGMENTS

This work was financially supported by the Ministry 
of Education, Science and Technological Development 
of the Serbian Government, under contract 451-03-
137/2025-03/200105, from date 04.02.2025.

REFERENCES

[1] 	 H. I. Jaafar, S. Y. S. Husseien, N. A. Selamat, M. S. 
M. Aras, and M. Z. A. Rashid, “Development of PID 
Controller for Controlling Desired Level of Coupled 
Tank System,” Internal Journal of Innovative Tech-
nology and Exploring Engineering, vol. 3, no. 9, pp. 
32-36, 2014. 

[2] 	 M. Ilyas, S. A. R. Shah, A. Ruf, Y. Khan, and M. 
Ayaz, “Stabilization of Liquid Level in Tank System 
Based on Fuzzy Logic Controller,” International 
Journal of Robotics and Automation, vol. 11, no. 4, 
pp. 315-323, 2022. 

[3] 	 S. Ahmad, S. Ali, and R. Tabasha, “The Design and 
Implementation of a Fuzzy Gain-Scheduled PID 
Controller for the Festo MPS PA Compact Work-
station Liquid Level Control,” Engineering Science 
and Technology, an International Journal, vol. 23, 
no. 2, pp. 307-315, 2020. 

[4] 	 B. S. Sousa, F. V. Silva, and A. M. F. Fileti, “Level 
Control of Coupled Tank System Based on Neural 
Network Techniques,” Chemical Product and Process 
Modeling, vol. 15, no. 3, p. 20190086, 2020. 

[5] 	 L. A. Torres-Salomao and J. Anzurez-Marin, 
“Adaptive Neuro-Fuzzy Inference System Control 
for a Two Tanks Hydraulic System Model,” in 2013 
IEEE International Autumn Meeting on Power 
Electronics and Computing, Morelia, 2013. 

[6] 	 D. Pradeepkannan and S. Sathiyamoorthy, “Control 
of a Non-Linear Coupled Spherical Tank Process 
Using GA Tuned PID Controller,” in 2014 IEEE 
International Conference on Advanced Commu-
nications, Control and Computing Technologies, 
Ramanathapuram, 2014. 

[7] 	 J. Bhookya, M. Vijaya Kumar, J. Ravi Kumar, and A. 
Seshagiri Rao, “Implementation of PID Controller for 
Liquid Level System Using mGWO and Integration 
of IoT application,” Journal of Industrial Information 
Integration, vol. 28, p. 100368, 2022. 

[8] 	 R. Jovanović, V. Zarić, M. Vesović, and L. Laban, 
“Modeling and Control of a Liquid Level System 
Based on the Takagi-Sugeno Fuzzy Model Using the 
Whale Optimization Algorithm,” in Proceedings of 
Papers - 7th International Conference on Electrical, 
Electronic and Computing Engineering IcETRAN 
2020, Belgrade, 2020. 

Table 4. Numerical values for classical and optimized PS controllers

Controller SSE Overshoot [%] Settling time [s]

PS ZN 0.4839 75 157.03

PS WOA 0.1975 42.5 56.2

http://sinteza.singidunum.ac.rs


70

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Computer Science and  
Artificial Intelligence Session 

[9] 	 N. Budimirovic, E. Prabhu, M. Antonijevic, M. 
Zivkovic, N. Bacanin, I. Strumberger, and K. 
Venkatachalam, “COVID-19 Severity Prediction 
Using Enhanced Whale with Salp Swarm Feature 
Classification,” Computers, Materials & Continua, 
vol. 72, no. 1, pp. 1685-1698, 2022. 

[10] 	 S. Golubovic, A. Petrovic, A. Bozovic, M. Antonijevic, 
M. Zivkovic, and N. Bacanin, “Gold Price Forecast 
Using Variational Mode Decomposition-Aided 
Long Short-Term Model Tuned by Modified Whale 
Optimization Algorithm,” in Data Intelligence and 
Cognitive Informatics. ICDICI 2023., Singapore, 
2024. 

[11] 	 S. Mirjalili and A. Lewis, “The Whale Optimization 
Algorithm,” Advances in Engineering Software, vol. 
95, pp. 51-67, 2016. 

[12] 	 J. G. Ziegler and N. B. Nichols, “Optimum Settings 
for Automatic Controllers,” Transactions of the 
American Society of Mechanical Engineers, vol. 64, 
no. 8, pp. 759-765, 1942. 

http://sinteza.singidunum.ac.rs



