
550

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

DOI: 10.15308/Sinteza-2025-550-554

OPTIMIZATION OF KUBERNETES: RESOURCE ALLOCATION
AND DYNAMIC SCALING

Abstract:
Kubernetes, a leading container orchestration platform, has become essential for
managing modern cloud-native applications due to its scalability, automation,
and resource optimization capabilities. This research focuses on Kubernetes'
architecture, resource allocation strategies, and autoscaling mechanisms,
highlighting key features such as the Horizontal Pod Autoscaler (HPA) and
Vertical Pod Autoscaler (VPA). Through an analysis of experimental data and
related works, the research underscores the importance of advanced schedul-
ing algorithms, efficient monitoring tools like Prometheus and Grafana, and
proactive resource management in improving overall operational efficiency.
The findings demonstrate that combining Kubernetes-native features with
customized enhancements can significantly reduce latency, resource conten-
tion, and operational costs, making Kubernetes a powerful tool for distributed
application management.

Keywords:
Kubernetes, Resource allocation strategies, Autoscaling mechanisms,
Horizontal Pod Autoscaler (HPA), Vertical Pod Autoscaler (VPA).

INTRODUCTION

Kubernetes (commonly abbreviated as K8s) is an open-source con-
tainer orchestration platform designed to automate the deployment, scal-
ing, and management of containerized applications. Developed originally
by Google and later adopted by the Cloud Native Computing Foundation
(CNCF), Kubernetes has become a cornerstone of cloud-native architec-
tures. Its robust ecosystem enables developers to focus on building and
delivering applications, while Kubernetes handles complex operational
tasks such as load balancing, resource allocation, and service discovery.

Kubernetes achieves this through its distributed architecture, where
multiple nodes operate as a unified cluster, ensuring high availability and
fault tolerance. The control plane manages the cluster’s state by moni-
toring workloads and scheduling tasks across worker nodes, which run
the containerized applications. Pods, the smallest deployable units in
Kubernetes, encapsulate one or more containers and share network and
storage resources within the same namespace. This architecture supports
horizontal scaling, where additional pods can be deployed dynamically
based on demand, and vertical scaling, where resource allocations for
existing pods can be adjusted.

STUDENT SESSION

Džemil Sejdija,
[0009-0009-2042-0559]

Aldina Avdić*
[0000-0003-4312-3839]

State University of Novi Pazar,
Novi Pazar, Serbia

Correspondence:
Aldina Avdić

e-mail:
apljaskovic@np.ac.rs

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15308/Sinteza-2025-550-554
https://doi.org/10.15308/Sinteza-2025-550-554
https://orcid.org/0009-0009-2042-0559
https://orcid.org/0000-0003-4312-3839

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

551

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

With the rapid growth of cloud-native computing,
Kubernetes has become indispensable for organizations
seeking to deploy resilient, scalable applications across
hybrid, multi-cloud, or edge environments. However,
as the scale and complexity of Kubernetes clusters grow,
challenges such as resource underutilization, high costs,
and performance bottlenecks necessitate adopting ad-
vanced optimization techniques. This research delves
into Kubernetes’ core components and resource man-
agement capabilities, focusing on strategies for optimiz-
ing autoscaling, dynamic resource allocation, and cost
efficiency to enhance system performance and reliability
in cloud-based environments. The methodology used
in this work is experimental. The paper consists of an
overview of similar works, an overview of Kubernetes
architecture, an overview of Kubernetes resources and
optimization methods, actual experiments for different
techniques, and a discussion of results.

2.	 LITERATURE OVERVIEW

Experimental data from industry examples demon-
strate the benefits of optimized Kubernetes configurations.

In the paper [1] key topics are Kubernetes autoscal-
ing mechanisms (HPA, VPA and CA) and performance
evaluation of HPA using Prometheus. Experimental in-
sights provided by the paper and practical lessons show
how to enhance the efficiency of resource management
in the Kubernetes environment.

In the paper [2], key topics are performance bottle-
necks (inefficient autoscaling) and experimental results
that show performance improvements. The focus on
reducing latency and enhancing scheduling strategies
achieves efficient dynamic resource allocation.

In the paper [3], the author uses techniques for op-
timizing resource allocation but also incorporates pre-
dictive analytics to anticipate workload demands. The
relevance of this work is the combination of Kubernetes-
native features with third-party tools. In combination
with other works, they give a lot of information regard-
ing: Resource Optimization, Autoscaling Insights, Perfor-
mance Improvement and Tool integration (Prometheus).

3.	 ARCHITECTURE OF KUBERNETES
The architecture of Kubernetes (Figure 1) follows a

master-worker distributed model, designed to efficiently
manage containerized workloads across multiple nodes.
This architecture ensures scalability, reliability, and fault
tolerance. The primary components are divided into
control plane components (master node) and data plane
components (worker nodes), with each serving a distinct
purpose to maintain the desired state of the cluster [4] [5].

3.1. THE CONTROL PLANE (MASTER NODE)

The control plane is responsible for managing the
overall state of the cluster, ensuring that the desired con-
figuration is maintained. The key components are:

•	 API Server: The communication hub of Kuber-
netes, handling requests and updates from users
and internal components.

•	 Controller Manager: Ensures the cluster stays in
the desired state by managing various controllers
(e.g., replication and node health).

•	 Scheduler: Assigns workloads (pods) to suitable
worker nodes based on available resources and
constraints.

•	 etcd: A distributed storage system that holds cluster
configuration and state data, ensuring consistency
and fault tolerance.

Figure 1. An Architecture of Kubernetes

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

552

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

3.2. THE DATA PLANE (WORKER NODES)

Worker nodes run the applications and provide the
necessary computing resources. The key components
are:

•	 kubelet: An agent on each node that ensures the
assigned containers are running and healthy.

•	 kube-proxy: Manages network communication
within the cluster and to external clients.

•	 Container Runtime: Responsible for running
containerized applications (e.g., Docker, Contai-
nered).

3.3. CORE KUBERNETES OBJECTS

Kubernetes uses objects like Pods, ReplicaSets, De-
ployments, Services, and Ingress to manage container-
ized workloads, ensuring scalability, availability, and
network accessibility within and outside the cluster.
Additionally, features like Namespaces enable logical
isolation for multi-tenancy, Horizontal Pod Autoscaler
(HPA) scales pods based on resource usage, and Verti-
cal Pod Autoscaler (VPA) optimizes resource allocation
dynamically.

Kubernetes facilitates communication within the
cluster through service discovery and internal DNS.
When a pod is created, it is assigned a unique IP address
within the cluster. Services enable other pods or external
clients to access these pods via stable DNS names, avoid-
ing direct dependency on pod IPs that may change over
time [6] [7].

4.	 KUBERNETES RESOURCES AND
OPTIMIZATION METHODS

Efficient resource management in Kubernetes is cru-
cial for achieving high performance, cost efficiency, and
system reliability. Kubernetes provides various mecha-
nisms to allocate and manage CPU, memory, and stor-
age resources across containerized applications. It offers
both static and dynamic resource allocation, allowing
workloads to scale based on demand.

When it comes to CPU management, Kubernetes
ensures that containers receive a guaranteed minimum
amount of CPU, while also setting an upper limit on
how much they can consume. For example, if a con-
tainer requests a fraction of a CPU core, it is guaranteed
that amount, but it cannot exceed a specified limit.

Memory management works in a similar way, where
a container is allocated a minimum amount of memory
to ensure stable performance. However, if it exceeds the
defined limit, it may be terminated to prevent excessive
resource consumption.

In terms of storage, Kubernetes supports different
types of storage solutions. Persistent storage can be ei-
ther pre-provisioned or dynamically created based on
application needs, ensuring data remains available even
if a pod is restarted. Applications can request specific
storage capacity using claims, while ephemeral storage
provides temporary space that exists only for the dura-
tion of a pod’s lifecycle.

By leveraging these resource management features,
Kubernetes ensures that applications run efficiently, us-
ing resources optimally while maintaining system stabil-
ity [8] [9].

Kubernetes optimizes resource use through autos-
caling, quotas, and monitoring. Autoscaling adjusts re-
sources based on demand—scaling pods horizontally to
handle increased load, vertically adjusting resource lim-
its (sometimes requiring restarts), and scaling clusters
by adding or removing nodes to control costs.

Resource management is enforced with quotas and
limits. Quotas cap total CPU, memory, and storage in
a namespace, while limit ranges set default resource al-
locations to prevent over or under-provisioning.

Workload placement is optimized using affinity rules
to assign pods to specific nodes and taints/tolerations to
isolate resource-heavy workloads.

Monitoring tools like Prometheus, Grafana, and
kube-state-metrics provide real-time insights into re-
source usage, helping ensure efficient performance and
cost management [10] [11] [12].

5.	 EXPERIMENTS

5.1. EXPERIMENT 1: HPA TESTING FOR CPU UTILIZATION

The objective is to observe HPA behavior in response
to increasing CPU utilization and pod scaling. The clus-
ter should have three worker nodes (4 CPUs, 8 GB RAM
each). Prometheus should be used for monitoring. The
methodology is as follows: deploy nginx (CPU 250m
request, 500m limit, memory 256Mi request, 512Mi
limit). Configure HPA to scale based on CPU and run
a load test with 2000req/sec using “hey”. The results are
in Table 1.

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

553

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

5.2. EXPERIMENT 2: VPA RESOURCE ADJUSTMENT

The objective is to analyse how VPA adjusts CPU
and memory allocations for pods based on usage pat-
terns. The cluster should have three worker nodes (4
CPUs and 16 GB RAM). The methodology is: to deploy
a Linux image and make it do a batch processing task
every 5 min (it can only generate and discard 128-256
MB of data to simulate CPU and memory load). Set ini-
tial CPU request to 100m and memory to 128Mi. En-
able VPA and monitor how VPA adjusts resources. The
results are in Table 2.

5.3. 	EXPERIMENT 3: RESOURCE QUOTAS AND COST
CONTROL

The objective is to enforce resource quotas and mon-
itor cost savings by restricting excessive resource usage
across namespaces. The cluster should have four nodes
(4 CPUs and 8 GB RAM) and two namespaces (team-a
and team-b). Apply resource quotas to both namespac-
es. Deploy applications that attempt to request higher
resources. Motor allocation is done using Grafana. The
results are in Table 3.

6.	 DISCUSSION

Experiment 1 showcased how the Horizontal Pod
Autoscaler (HPA) dynamically adjusted the pod count
based on CPU usage. When usage exceeded 50%, the
HPA increased the number of pods to handle the load,
preventing performance issues. As the load decreased,
the HPA scaled down the pods, optimizing resource us-
age and reducing costs. This demonstrated the HPA's ef-
fectiveness in maintaining system stability and ensuring
responsiveness during peaks while conserving resources
during idle times. Overall, the HPA proved to be a valu-
able tool for balancing performance and cost efficiency.

Experiment 2 demonstrated how the Vertical Pod
Autoscaler (VPA) adjusted CPU and memory based on
workload demands. As resource usage increased, VPA
allocated more resources to ensure smooth perfor-
mance. Conversely, when the demand dropped, it scaled
down resource allocation to avoid over-provisioning. By
dynamically adjusting resources, VPA optimized alloca-
tion, preventing inefficiencies, and ensuring the system
operated cost-effectively

Experiment 3 demonstrated how resource quotas
effectively managed resource usage by enforcing lim-
its. When team-a exceeded their allocated quota, their
excessive requests were throttled, ensuring that other
teams had fair access to resources.

Table 1. HPA Results

Time CPU% Utilization Number of pods

0 20 2

5 55 4

10 70 6

15 80 8

20 48 4

Table 2. VPA Results

Time CPU Request(m) Memory Request

0 100 128

5 200 256

10 400 512

15 250 384

20 150 256

Table 3. Resource quota results

Namespace Requested CPU Allocated CPU Status

Team-a 3 2 Limited

Team-b 1.5 1.5 Allowed

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

554

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

By implementing quotas, resource allocation remained
balanced and prevented any team from monopolizing
resources, promoting fairness across the system.

7.	 CONCLUSION

Effective resource management in Kubernetes is fur-
ther supported by proactive monitoring through tools
such as Prometheus and Grafana. These monitoring
solutions enable real-time visibility into resource con-
sumption, providing valuable insights that allow for
timely adjustments and informed decision-making. By
continuously tracking key performance metrics, organ-
izations can identify potential bottlenecks before they
impact operations, ensuring that resources are utilized
efficiently, and applications remain stable under varying
workloads. The integration of monitoring with autos-
caling capabilities contributes to a more resilient and
responsive infrastructure, ultimately improving the re-
liability and efficiency of cloud-native applications. The
combination of HPA and VPA offers a holistic approach
to scalability and resource management within Kuber-
netes environments. While HPA provides the ability to
scale horizontally by increasing or decreasing the num-
ber of running pods based on load, VPA fine-tunes re-
source allocations within individual pods to ensure effi-
cient utilization. This synergistic approach enhances the
responsiveness of applications to fluctuating workloads
and ensures that resources are allocated precisely where
they are needed, reducing waste and improving overall
performance. Together, these autoscaling mechanisms
provide a comprehensive solution to the challenges of
managing cloud-native applications in dynamic envi-
ronments.

REFERENCES

[1] 	 T.-T. Nguyen, A. M. Rahman, Y. H. Tran, Q. M.
Tran, and C. H. Choi, “Horizontal pod autoscaling
in Kubernetes for elastic container orchestration,”
Sensors, vol. 20, no. 16, p. 4621, 2020. doi: 10.3390/
s20164621.

[2] 	 S. K. Mondal, Z. Zheng, and Y. Cheng, “On the
optimization of Kubernetes toward the enhance-
ment of cloud computing,” Mathematics, vol. 12,
no. 16, p. 2476, 2024. doi: 10.3390/math12162476.

[3] 	 A. Mustyala, “Dynamic resource allocation in
Kubernetes: Optimizing cost and performance,”
EPH - International Journal of Science and Engineering,
vol. 7, no. 3, pp. 59–71, 2021.

[4] 	 C. C. Chang, S. R. Yang, E. H. Yeh, P. Lin, and J.
Y. Jeng, “A Kubernetes-based monitoring platform
for dynamic cloud resource provisioning,” in Proc.
IEEE Global Communications Conference (GLOBE-
COM), Singapore, 2017, pp. 1–6. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/8254046

[5] 	 G. Rattihalli, M. Govindaraju, H. Lu, and D.
Tiwari, “Exploring potential for non-disruptive
vertical auto scaling and resource estimation in
Kubernetes,” in Proc. IEEE Int. Conf. on Cloud
Computing (CLOUD), Milan, Italy, 2019, pp. 33–
40. [Online]. Available: https://ieeexplore.ieee.org/
document/8814504

[6] 	 M. Song, C. Zhang, and H. E, “An auto scaling system
for API gateway based on Kubernetes,” in Proc.
2018 IEEE 9th Int. Conf. on Software Engineering and
Service Science (ICSESS), Beijing, China, 2018, pp.
109–112. doi: 10.1109/ICSESS.2018.8663784.

[7] 	 Y. Jin-Gang, Z. Ya-Rong, Y. Bo, and L. Shu,
“Research and application of auto-scaling unified
communication server based on Docker,” in Proc.
2017 10th Int. Conf. on Intelligent Computation
Technology and Automation (ICICTA), Changsha,
China, 2017, pp. 152–156. [Online]. Available: htt-
ps://ieeexplore.ieee.org/document/8089924

[8] 	 P. Townend, A. Basu, M. Eisa, and J. Kołodziej,
“Improving data center efficiency through holis-
tic scheduling in Kubernetes,” in Proc. 2019 IEEE
Int. Conf. on Service-Oriented System Engineering
(SOSE), Newark, CA, USA, 2019, pp. 156–166.
[Online]. Available: https://ieeexplore.ieee.org/
document/8705815

[9] 	 D. Balla, C. Simon, and M. Maliosz, “Adaptive
scaling of Kubernetes pods,” in Proc. IEEE/IFIP
Network Operations and Management Symposium
(NOMS), Budapest, Hungary, 2020, pp. 8–12. [On-
line]. Available: https://ieeexplore.ieee.org/docu-
ment/9110428

[10] 	 E. Casalicchio and V. Perciballi, “Auto-scaling of
containers: The impact of relative and absolute
metrics,” in Proc. 2017 IEEE 2nd Int. Workshops
on Foundations and Applications of Self Systems
(FASW), Tucson, AZ, USA, 2017, pp. 207–214.
[Online]. Available: https://ieeexplore.ieee.org/
document/8064125

[11] 	 J. Santos, T. Wauters, B. Volckaert, and F. D. Turck,
“Resource provisioning in fog computing: From
theory to practice,” Sensors, vol. 19, no. 10, p. 2238,
2019. doi: 10.3390/s19102238.

[12] 	 W. S. Zheng and L. H. Yen, “Auto-scaling in
Kubernetes-based Fog Computing platform,” in
Proceedings of the International Computer Sympo-
sium, Singapore: Springer, 2018, pp. 338–345. doi:
10.1007/978-981-13-9190-3_35.

http://sinteza.singidunum.ac.rs

