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OPTIMIZATION OF KUBERNETES: RESOURCE ALLOCATION 
AND DYNAMIC SCALING

Abstract: 
Kubernetes, a leading container orchestration platform, has become essential for 
managing modern cloud-native applications due to its scalability, automation, 
and resource optimization capabilities. This research focuses on Kubernetes' 
architecture, resource allocation strategies, and autoscaling mechanisms, 
highlighting key features such as the Horizontal Pod Autoscaler (HPA) and 
Vertical Pod Autoscaler (VPA). Through an analysis of experimental data and 
related works, the research underscores the importance of advanced schedul-
ing algorithms, efficient monitoring tools like Prometheus and Grafana, and 
proactive resource management in improving overall operational efficiency. 
The findings demonstrate that combining Kubernetes-native features with 
customized enhancements can significantly reduce latency, resource conten-
tion, and operational costs, making Kubernetes a powerful tool for distributed 
application management.
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INTRODUCTION

Kubernetes (commonly abbreviated as K8s) is an open-source con-
tainer orchestration platform designed to automate the deployment, scal-
ing, and management of containerized applications. Developed originally 
by Google and later adopted by the Cloud Native Computing Foundation 
(CNCF), Kubernetes has become a cornerstone of cloud-native architec-
tures. Its robust ecosystem enables developers to focus on building and 
delivering applications, while Kubernetes handles complex operational 
tasks such as load balancing, resource allocation, and service discovery.

Kubernetes achieves this through its distributed architecture, where 
multiple nodes operate as a unified cluster, ensuring high availability and 
fault tolerance. The control plane manages the cluster’s state by moni-
toring workloads and scheduling tasks across worker nodes, which run 
the containerized applications. Pods, the smallest deployable units in 
Kubernetes, encapsulate one or more containers and share network and 
storage resources within the same namespace. This architecture supports 
horizontal scaling, where additional pods can be deployed dynamically 
based on demand, and vertical scaling, where resource allocations for 
existing pods can be adjusted.
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With the rapid growth of cloud-native computing, 
Kubernetes has become indispensable for organizations 
seeking to deploy resilient, scalable applications across 
hybrid, multi-cloud, or edge environments. However, 
as the scale and complexity of Kubernetes clusters grow, 
challenges such as resource underutilization, high costs, 
and performance bottlenecks necessitate adopting ad-
vanced optimization techniques. This research delves 
into Kubernetes’ core components and resource man-
agement capabilities, focusing on strategies for optimiz-
ing autoscaling, dynamic resource allocation, and cost 
efficiency to enhance system performance and reliability 
in cloud-based environments. The methodology used 
in this work is experimental. The paper consists of an 
overview of similar works, an overview of Kubernetes 
architecture, an overview of Kubernetes resources and 
optimization methods, actual experiments for different 
techniques, and a discussion of results.

2.	 LITERATURE OVERVIEW

Experimental data from industry examples demon-
strate the benefits of optimized Kubernetes configurations. 

In the paper [1] key topics are Kubernetes autoscal-
ing mechanisms (HPA, VPA and CA) and performance 
evaluation of HPA using Prometheus. Experimental in-
sights provided by the paper and practical lessons show 
how to enhance the efficiency of resource management 
in the Kubernetes environment. 

In the paper [2], key topics are performance bottle-
necks (inefficient autoscaling) and experimental results 
that show performance improvements. The focus on 
reducing latency and enhancing scheduling strategies 
achieves efficient dynamic resource allocation.

In the paper [3], the author uses techniques for op-
timizing resource allocation but also incorporates pre-
dictive analytics to anticipate workload demands. The 
relevance of this work is the combination of Kubernetes-
native features with third-party tools. In combination 
with other works, they give a lot of information regard-
ing: Resource Optimization, Autoscaling Insights, Perfor-
mance Improvement and Tool integration (Prometheus).

3.	 ARCHITECTURE OF KUBERNETES
The architecture of Kubernetes (Figure 1) follows a 

master-worker distributed model, designed to efficiently 
manage containerized workloads across multiple nodes. 
This architecture ensures scalability, reliability, and fault 
tolerance. The primary components are divided into 
control plane components (master node) and data plane 
components (worker nodes), with each serving a distinct 
purpose to maintain the desired state of the cluster [4] [5].

3.1. THE CONTROL PLANE (MASTER NODE)

The control plane is responsible for managing the 
overall state of the cluster, ensuring that the desired con-
figuration is maintained. The key components are:

•	 API Server: The communication hub of Kuber-
netes, handling requests and updates from users 
and internal components.

•	 Controller Manager: Ensures the cluster stays in 
the desired state by managing various controllers 
(e.g., replication and node health).

•	 Scheduler: Assigns workloads (pods) to suitable 
worker nodes based on available resources and 
constraints.

•	 etcd: A distributed storage system that holds cluster 
configuration and state data, ensuring consistency 
and fault tolerance.

Figure 1. An Architecture of Kubernetes
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3.2. THE DATA PLANE (WORKER NODES)

Worker nodes run the applications and provide the 
necessary computing resources. The key components 
are:

•	 kubelet: An agent on each node that ensures the 
assigned containers are running and healthy.

•	 kube-proxy: Manages network communication 
within the cluster and to external clients.

•	 Container Runtime: Responsible for running 
containerized applications (e.g., Docker, Contai-
nered).

3.3. CORE KUBERNETES OBJECTS

Kubernetes uses objects like Pods, ReplicaSets, De-
ployments, Services, and Ingress to manage container-
ized workloads, ensuring scalability, availability, and 
network accessibility within and outside the cluster. 
Additionally, features like Namespaces enable logical 
isolation for multi-tenancy, Horizontal Pod Autoscaler 
(HPA) scales pods based on resource usage, and Verti-
cal Pod Autoscaler (VPA) optimizes resource allocation 
dynamically.

Kubernetes facilitates communication within the 
cluster through service discovery and internal DNS. 
When a pod is created, it is assigned a unique IP address 
within the cluster. Services enable other pods or external 
clients to access these pods via stable DNS names, avoid-
ing direct dependency on pod IPs that may change over 
time [6] [7].

4.	 KUBERNETES RESOURCES AND 
OPTIMIZATION METHODS

Efficient resource management in Kubernetes is cru-
cial for achieving high performance, cost efficiency, and 
system reliability. Kubernetes provides various mecha-
nisms to allocate and manage CPU, memory, and stor-
age resources across containerized applications. It offers 
both static and dynamic resource allocation, allowing 
workloads to scale based on demand.

When it comes to CPU management, Kubernetes 
ensures that containers receive a guaranteed minimum 
amount of CPU, while also setting an upper limit on 
how much they can consume. For example, if a con-
tainer requests a fraction of a CPU core, it is guaranteed 
that amount, but it cannot exceed a specified limit.

Memory management works in a similar way, where 
a container is allocated a minimum amount of memory 
to ensure stable performance. However, if it exceeds the 
defined limit, it may be terminated to prevent excessive 
resource consumption.

In terms of storage, Kubernetes supports different 
types of storage solutions. Persistent storage can be ei-
ther pre-provisioned or dynamically created based on 
application needs, ensuring data remains available even 
if a pod is restarted. Applications can request specific 
storage capacity using claims, while ephemeral storage 
provides temporary space that exists only for the dura-
tion of a pod’s lifecycle.

By leveraging these resource management features, 
Kubernetes ensures that applications run efficiently, us-
ing resources optimally while maintaining system stabil-
ity [8] [9].

Kubernetes optimizes resource use through autos-
caling, quotas, and monitoring. Autoscaling adjusts re-
sources based on demand—scaling pods horizontally to 
handle increased load, vertically adjusting resource lim-
its (sometimes requiring restarts), and scaling clusters 
by adding or removing nodes to control costs.

Resource management is enforced with quotas and 
limits. Quotas cap total CPU, memory, and storage in 
a namespace, while limit ranges set default resource al-
locations to prevent over or under-provisioning.

Workload placement is optimized using affinity rules 
to assign pods to specific nodes and taints/tolerations to 
isolate resource-heavy workloads.

Monitoring tools like Prometheus, Grafana, and 
kube-state-metrics provide real-time insights into re-
source usage, helping ensure efficient performance and 
cost management [10] [11] [12].

5.	 EXPERIMENTS

5.1. EXPERIMENT 1: HPA TESTING FOR CPU UTILIZATION

The objective is to observe HPA behavior in response 
to increasing CPU utilization and pod scaling. The clus-
ter should have three worker nodes (4 CPUs, 8 GB RAM 
each). Prometheus should be used for monitoring. The 
methodology is as follows: deploy nginx (CPU 250m 
request, 500m limit, memory 256Mi request, 512Mi 
limit). Configure HPA to scale based on CPU and run 
a load test with 2000req/sec using “hey”. The results are 
in Table 1.

http://sinteza.singidunum.ac.rs
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5.2. EXPERIMENT 2: VPA RESOURCE ADJUSTMENT

The objective is to analyse how VPA adjusts CPU 
and memory allocations for pods based on usage pat-
terns. The cluster should have three worker nodes (4 
CPUs and 16 GB RAM). The methodology is: to deploy 
a Linux image and make it do a batch processing task 
every 5 min (it can only generate and discard 128-256 
MB of data to simulate CPU and memory load). Set ini-
tial CPU request to 100m and memory to 128Mi. En-
able VPA and monitor how VPA adjusts resources. The 
results are in Table 2.

5.3. 	EXPERIMENT 3: RESOURCE QUOTAS AND COST 
CONTROL

The objective is to enforce resource quotas and mon-
itor cost savings by restricting excessive resource usage 
across namespaces. The cluster should have four nodes 
(4 CPUs and 8 GB RAM) and two namespaces (team-a 
and team-b). Apply resource quotas to both namespac-
es. Deploy applications that attempt to request higher 
resources. Motor allocation is done using Grafana. The 
results are in Table 3.

6.	 DISCUSSION

Experiment 1 showcased how the Horizontal Pod 
Autoscaler (HPA) dynamically adjusted the pod count 
based on CPU usage. When usage exceeded 50%, the 
HPA increased the number of pods to handle the load, 
preventing performance issues. As the load decreased, 
the HPA scaled down the pods, optimizing resource us-
age and reducing costs. This demonstrated the HPA's ef-
fectiveness in maintaining system stability and ensuring 
responsiveness during peaks while conserving resources 
during idle times. Overall, the HPA proved to be a valu-
able tool for balancing performance and cost efficiency.

Experiment 2 demonstrated how the Vertical Pod 
Autoscaler (VPA) adjusted CPU and memory based on 
workload demands. As resource usage increased, VPA 
allocated more resources to ensure smooth perfor-
mance. Conversely, when the demand dropped, it scaled 
down resource allocation to avoid over-provisioning. By 
dynamically adjusting resources, VPA optimized alloca-
tion, preventing inefficiencies, and ensuring the system 
operated cost-effectively

Experiment 3 demonstrated how resource quotas 
effectively managed resource usage by enforcing lim-
its. When team-a exceeded their allocated quota, their 
excessive requests were throttled, ensuring that other 
teams had fair access to resources. 

Table 1. HPA Results

Time CPU% Utilization Number of pods

0 20 2

5 55 4

10 70 6

15 80 8

20 48 4

Table 2. VPA Results

Time CPU Request(m) Memory Request

0 100 128

5 200 256

10 400 512

15 250 384

20 150 256

Table 3. Resource quota results

Namespace Requested CPU Allocated CPU Status

Team-a 3 2 Limited

Team-b 1.5 1.5 Allowed
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By implementing quotas, resource allocation remained 
balanced and prevented any team from monopolizing 
resources, promoting fairness across the system.

7.	 CONCLUSION

Effective resource management in Kubernetes is fur-
ther supported by proactive monitoring through tools 
such as Prometheus and Grafana. These monitoring 
solutions enable real-time visibility into resource con-
sumption, providing valuable insights that allow for 
timely adjustments and informed decision-making. By 
continuously tracking key performance metrics, organ-
izations can identify potential bottlenecks before they 
impact operations, ensuring that resources are utilized 
efficiently, and applications remain stable under varying 
workloads. The integration of monitoring with autos-
caling capabilities contributes to a more resilient and 
responsive infrastructure, ultimately improving the re-
liability and efficiency of cloud-native applications. The 
combination of HPA and VPA offers a holistic approach 
to scalability and resource management within Kuber-
netes environments. While HPA provides the ability to 
scale horizontally by increasing or decreasing the num-
ber of running pods based on load, VPA fine-tunes re-
source allocations within individual pods to ensure effi-
cient utilization. This synergistic approach enhances the 
responsiveness of applications to fluctuating workloads 
and ensures that resources are allocated precisely where 
they are needed, reducing waste and improving overall 
performance. Together, these autoscaling mechanisms 
provide a comprehensive solution to the challenges of 
managing cloud-native applications in dynamic envi-
ronments.
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