
536

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

DOI: 10.15308/Sinteza-2025-536-543

SDLC-INDEPENDENT PYTHON-BASED QUERY PERFORMANCE
BENCHMARKING APPROACH AND PRACTICAL OPTIMAL
DATABASE SELECTION GUIDELINES

Abstract:
One of the critical decisions of software development teams in application
development is choosing the most optimal database. Modern business condi-
tions require software development teams to continually improve application
performance, and a common dilemma is whether to transition from a rela-
tional database to a non-relational database or vice versa. Changes during the
application development phase can slow down and complicate the process,
so it is crucial to empirically approach data analysis and decision-making
before implementing any changes. This research aims to facilitate the optimal
database selection by following established practical guidelines for optimal
database selection and implementing an SDLC-independent Python-based
query performance benchmarking approach. This benchmarking approach
is a crucial part of the optimal database selection process particularly useful
in the early stages of development or when considering a migration to an
existing project. The research methodology includes qualitative and quan-
titative methods: analytical-synthetic, experimental, comparative analysis,
and hypothetical-deductive methods. The results of this research include the
practical optimal database selection guidelines, the process of conducting the
benchmark, and the utilization of both the guidelines and benchmark results
for optimal database selection of an application where changing the initially
selected MySQL database to MongoDB is being considered.

Keywords:
SQL vs NoSQL, MySQL vs MongoDB, Optimal Database Selection Guidelines,
Query Performance Benchmark, Python.

INTRODUCTION

In modern business conditions, software development teams fre-
quently encounter challenges such as difficult application development,
data consistency and integrity, processing complex queries, real-time
fraud detection, robustness, efficiency, scalability, agility, transaction
consistency, complex relationships and transactions, unstable workloads,
real-time analytics and updates, managing user-generated data, and
many more. The main reasons for those challenges can be wrong initial
database selection, requirements evolving over time, increased applica-
tion popularity, unpredictable traffic spikes, large or constantly evolving
data sets, and changed market conditions and consumer preferences.
In order to resolve those challenges, it is vital to select the most optimal
database for the application’s architecture and requirements.

STUDENT SESSION

Katarina Milojković*,
[0000-0001-8658-8973]
Petar Spalević,
[0000-0002-6867-7259]

Nikola Vasić,
[0000-0003-2713-4589]

Nikola Milojković,
[0009-0001-0106-9662]

Hristina Milojković
[0000-0003-4150-3301]

Singidunum University,
Belgrade, Serbia

Correspondence:
Katarina Milojković

e-mail:
katarina.milojkovic.21@singimail.rs

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15308/Sinteza-2025-536-543
https://doi.org/10.15308/Sinteza-2025-536-543
https://orcid.org/0000-0001-8658-8973
https://orcid.org/0000-0002-6867-7259
https://orcid.org/0000-0003-2713-4589
https://orcid.org/0009-0001-0106-9662
https://orcid.org/0000-0003-4150-3301

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

537

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

All of the above confirms the extreme importance
of choosing the right database solution at every stage of
the Software Development Life Cycle (SDLC). Devel-
opers can choose a relational (SQL) or a non-relational
(NoSQL) database solution for the sake of establishing,
maintaining, and improving performance, security, re-
liability, and user satisfaction. Changes during the ap-
plication development phase can slow down and com-
plicate the process, especially if that change is a wrong
database selection because replacing it will be time-con-
suming and costly. In order to avoid that, it is crucial
to have a deep understanding of SQL and NoSQL pros
and cons, as well as empirically approach data analysis
and decision-making before implementing any changes.
Organizations conduct benchmarks using a framework
or script created by a programming language such as Py-
thon in order to analyze the data flow and performance
in real-time as well as simulate other database solutions
working in an application and test their performance.
The goal of this research is to share insights and knowl-
edge regarding optimal database selection facilitation
by following established practical guidelines for optimal
database choice and implementing an SDLC-independ-
ent Python-based query performance benchmarking
approach.

The hypothesis tested in this research states that
MongoDB is the optimal database solution for the
“BooksByHM” application. The content-sharing web
application “BooksByHM” allows authors to publish
chapters, books, images, and audio versions while ena-
bling users to interact through likes, ratings, comments,
and purchases. The application is currently in a mid-
developing phase where changing the initially selected
MySQL database to MongoDB is being considered.

In the 'Literature review' section, relevant research
was summarized and presented to provide a deeper in-
sight into this research. This section serves as a founda-
tion for practical optimal database selection guidelines.
The methodology used for this research is thoroughly
explained in the 'Methodology' section, while the im-
plementation of the Python-based query performance
benchmarking approach is in the 'Implementation' sec-
tion. The results of qualitative and quantitative meth-
ods used in this research and the discussion of those re-
sults are shown in the 'Results and Discussion' section,
whereas the 'Conclusion' section presents the conclu-
sions drawn from the research.

2. LITERATURE REVIEW

Database selection is one of the most crucial deci-
sions developers must make to develop a system and
maintain performance, reliability, and user satisfaction.
[1] [2] Selecting the wrong database will make applica-
tion development difficult because replacing it will be
time-consuming and costly, so it must be done with
careful consideration of long-term support and sus-
tainability. [1] Before choosing, switching, or migrating
databases, organizations conduct benchmarks using a
framework or script created by a programming language
such as Python in order to analyze the data flow and
performance in real-time. [3] [4] [5] Benchmarking is
the process of running a specific program or workload
on a machine or system to evaluate its performance for
that workload accurately. [6] The reason behind making
database changes is to improve efficiency, maintainabil-
ity, scalability, and security. [5] With the Python mi-
gration script, data from one database can be present
in another database. [5] Python is a dynamically typed
programming language frequently used for scientific
research, web development, machine learning, artificial
intelligence, and data analysis. [7] Python is usable in
various fields because it has a powerful standard library
and wide module support. [7] Working with MySQL
and MongoDB is possible in Python if libraries such
as mysql-connector-python and pymongo are installed
and MySQL and MongoDB servers are connected. [8]

In order to choose the most optimal database, re-
lational (SQL) or non-relational (NoSQL), several fac-
tors must be taken into account such as the data and
database structure, schema flexibility, data scalability,
query language for defining and manipulating the data,
performance indicators, guaranteed properties (ACID,
BASE, CAP), and cost. [9] Another important factor
can be security, licensing, and its capability with differ-
ent tools. [5] SQL offers extensive integration support,
while NoSQL provides modern APIs and flexible data
formats for seamless integration with microservices and
cloud-native architectures. [2] These factors can be more
harmful than helpful if not utilized efficiently within the
software architecture [5] and requirements. [8]

Based on the data structure of stored data, database
models are examined as relational databases (SQL data-
bases), where structured data is stored in a predefined
schema, and non-relational databases (NoSQL data-
bases), where unstructured data is not stored in a pre-
defined schema. [7] The advantages of storing data in
a predefined schema are predicting entities and values
the application expects, validating data based on exist-

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

538

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

ing or new records, using database constraints, and or-
ganizing data through normalization. [1] On the other
hand, NoSQL schemas enhance flexibility and scalabil-
ity, simplify Big Data management, and allow develop-
ers to focus on software application development, and
database optimization. [9] SQL databases, as a tabular
relational model, use tables where data is stored in the
forms of rows (records) and columns (attributes). [10]
[8] Popular SQL databases that have become industry
standards are MySQL, PostgreSQL, Oracle Database,
and Microsoft SQL Server. [11] NoSQL databases are
non-tabular databases, which is why they use data mod-
els such as document-based, key-values, column-based,
or graph-based. [3] Document-based databases store
data in document forms inside a collection. [1] Since
they do not implement field validations and constraint
checks, they are swift. [1] Because the same entity with
different fields can be stored multiple times, developers
need to pay attention to the application side to avoid
making mistakes. [1] Document-based databases have
a multi-server architecture. [1] They are ideal for ap-
plication development, flexible data structures, scalabil-
ity, and dynamic schemas. [1] Popular document-based
NoSQL solutions are MongoDB, CouchDB, CosmosDB,
DynamoDB [1] [10], and Firebase. [12] MongoDB is an
open-source NoSQL database that uses a document-
oriented approach. [4] MongoDB uses XML, JavaScript
Object Notation (JSON), or Binary JSON (BSON) to en-
code and store data in a document format. [10] Queries
are performed over collections or using map-reduce. [4]

MySQL has a networked client-server architecture
which has two components, MySQL server and client
programs. [4] MySQL architecture is a web of task-re-
lated functions that work to finish the job of a database
server. [4] Relational databases can have a multi-server
architecture by using shared storage technology. [1]
MySQL uses master-slave replication through a cluster-
based architecture, whereas MongoDB uses master-
slave replication through replica sets. [4]

Most relational databases are vertically scalable,
meaning that the load on a server will be increased by
increasing/upgrading the server’s hardware components
like RAM, HDD/SSD, and CPU. [1] Non-relational da-
tabases are horizontally scalable, meaning they can sup-
port increased traffic by adding servers and instances. [10]
NoSQL databases can be more cost-effective than SQL da-
tabases due to horizontal scalability and open-source free
solutions. [9] The scalability of MongoDB is easy to im-
plement and performs better whereas MySQL maintains
data integrity. [4] [13] [14] However, MySQL can improve
scalability by using cloud-based technologies. [14]

SQL databases use Structured Query Language
(SQL), a declarative and standardized query language
for defining, manipulating, querying, and managing
data. [9] [10] [11] NoSQL databases use Not Only Struc-
tured Query Language (NoSQL), a custom query lan-
guage tailored to their specific data models. [3]

 The performance evaluation (query runtime, mem-
ory used, CPU used, and storage size) of different SQL
and NoSQL databases resulted in MongoDB outper-
forming almost all tests with a large data volume [13]
[3] for example, 10,000+ records. [10] The result is due
to the way data is stored, complex joins, and data nor-
malization. [10] NoSQL select operations are 3 times
faster, delete operations are 6 times faster, update op-
erations are 9 times faster, and insert operations are 15
times faster than SQL. [10] MySQL shows better perfor-
mance for small datasets (a few thousand records) and
few database operations (a hundred operations daily).
[15] SQL databases have a better join query performance
[13] and use less CPU resources and memory usage for
task completion compared to NoSQL databases. [15]
However, the process of storing and retrieving complex
data types (images as byte data) was faster inside NoSQL
databases like MongoDB. [15] MongoDB outperformed
MySQL in terms of Latency, Throughput, scalability, se-
curity, performance, and availability. [4]

SQL databases follow ACID (Atomic, Consistent,
Isolated, and Durable) transaction principles [7] and
CAP (Consistency, Availability, and Partition Toler-
ance) theorem. [11] Instead, NoSQL databases follow
the BASE (Basically Available, Soft-State, and Eventual
Consistency) transaction principles [7] and CAP (Con-
sistency, Availability, and Partition Tolerance) theorem.
[11] NoSQL databases often do not follow ACID prin-
ciples, such as strong data consistency, which makes
processing complex SQL queries challenging. [14] This
can be overcome with automatic machine-learning clas-
sification techniques such as SVM, K-means, and NBC.
[14] Distributed systems can only prioritize two out
of three CAP principles. [11] SQL databases prioritize
consistency and availability, whereas NoSQL databases
prioritize tolerance and availability which makes them
offer eventual consistency instead of strict consistency.
[11] NoSQL databases lack full support for atomicity,
consistency, isolation, and durability features found in
SQL databases. [14] NoSQL databases sacrifice some
robustness to achieve more speed and scalability. [1]
Relational databases managed by RDBMS assure data
integrity and transaction consistency. [9] In relational
databases, the data storage performance degrades as the
data volume increases. [9]

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

539

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

SQL databases are used for e-commerce [8], transac-
tion applications, financial systems, enterprise resource
planning (ERP) systems, customer relationship manage-
ment (CRM) systems, applications that require complex
queries [11], relationships and transactions, strong data
integrity, inventory control, applications with stable
workloads [2], applications with multi-row transactions
[9] , payment processing, and core banking systems. [16]

NoSQL databases are used for big data analytics,
recommendation systems, Internet of Things (IoT) [8],
cloud-based applications [4], real-time analytics, con-
tent management systems, social networks [11], appli-
cations with large or constantly evolving data sets [9],
applications focused on rapid data access, flexible data
models, scalability, high traffic loads, unpredictable
traffic spikes, managing user-generated data, real-time
updates, product catalogs, and inventory data [2], agile
applications where requirements evolve over time [17]
[11], data mining applications [13], real-time fraud de-
tection, and personalized finance services. [16]

A hybrid database approach combines the strengths
of SQL and NoSQL systems allowing organizations to
tailor their database solutions to their needs. [11] [8] [2]
However, this approach requires careful planning and
implementation because it can complicate data manage-
ment and integration. [11] A hybrid solution (SQL for
transaction processing and core banking systems, and
NoSQL for big data analytics, real-time fraud detec-
tion, and customer management) was chosen for the
FinTech application founded on large-scale data pro-
cessing, transactional integrity, and real-time analytics,
and warrants robust and highly scalable database solu-
tions. [16] Netflix uses SQL for billing and subscriber
data while using NoSQL for viewing history and recom-
mendations. Similarly, Uber uses SQL for transactional
accuracy in rides and payments, while NoSQL handles
real-time tracking for high availability. [11] PayPal uses
Apache Cassandra to power its real-time fraud detection
systems. [16] JP Morgan Chase uses SQL databases in its
core banking operations. [16] Countries with a higher
number of train stations and stops such as Germany,
Netherlands, and others, use non-relation databases.
Whereas smaller size train stations in Slovakia use re-
lation databases. [10] Google, Facebook, Twitter, and
Amazon prefer NoSQL database systems because they
have very large datasets, and they need to implement
their solutions on multiple servers and NoSQL are hori-
zontally scalable databases. [1] [4] [10]

3. METHODOLOGY

The research combines qualitative and quantita-
tive methods such as analytical-synthetic, experimen-
tal, comparative analysis, and hypothetical-deductive
methods. The analytical-synthetic method was used to
conduct a comprehensive analysis of SQL and NoSQL
databases and synthesize those findings in the form of
practical guidelines for choosing the optimal database.
The experimental method was used to conduct an ex-
periment with the SDLC-independent Python-based
query performance benchmarking approach to meas-
ure the query execution time of MySQL and MongoDB
under the same conditions. The benchmark results were
compared and analyzed using the comparative analy-
sis method. A hypothetical-deductive method was used
for testing the set hypothesis with the results of analyt-
ical-synthetic, experimental, and comparative analysis
methods, and reaching deductions on optimal database
choice for the “BooksByHM” application based on the
obtained results.

4. IMPLEMENTATION

The process of conducting an SDLC-independent
Python-based benchmark for measuring query execu-
tion time consists of database and data preparation,
setting up benchmarking conditions, executing bench-
marking queries, and measuring performance metrics.

The experiment is set under the same initial bench-
marking conditions:

• Hardware and system specifications:
• Processor: AMD Ryzen 7 3700U with Radeon

Vega Mobile Gfx (8 CPUs), ~2.3GHz
• RAM: 8.00 GB
• Operating System: Windows 11 Pro
• System type: 64-bit operating system, x64-

based processor
• Software and database versions:

• Python version: 3.13.2
• PIP version: 24.3.1
• MySQL version: 10.4.28-MariaDB
• MongoDB version: 8.0.0
• Python libraries: mysql-connector-python,

pymongo, random, and time.

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

540

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

• Dataset description:
• The smaller dataset contains 10 book records

and 11 user records.
• The bigger dataset contains 10.000 book

records and 1.001 user records.
• MySQL tables: books, users, user_books

(many-to-many relationship)
• MongoDB collections: books, users (embedded

book list)
• MySQL indexing: primary keys on id fields,

foreign keys in user_books
• MongoDB indexing: default index on _id.

The databases were prepared by duplicating the ex-
isting MySQL database used in the “BooksByHM” appli-
cation and creating an equivalent MongoDB database.
Working with MySQL and MongoDB databases in Py-
thon was made possible by installing mysql-connector-
python and pymongo Python packages and connecting
MySQL and MongoDB servers in the Python script. In-
stalling the MySQL Connector package for Python on
Windows using PIP was done with the command: pip
install mysql-connector-python. On the other hand, the
command used for installing the PyMongo package for
Python on Windows using PIP was: pip install pymongo.
Listing 1 shows the Python code used to establish the
connection of specific MySQL and MongoDB databases.

mysql_conn = mysql.connector.connect(
 host="localhost",
 user="root",
 password="",
 database="books_by_hm"
)
mysql_cursor = mysql_conn.cursor()

mongo_client = MongoClient("mongodb://localhost:27017/")
mongo_db = mongo_client["books_by_hm"]
mongo_books = mongo_db["books"]
mongo_users = mongo_db["users"]

Listing 1. Python code is used to establish a connection between the MySQL database and the MongoDB database

def measure_mysql():
 start = time.time()
 mysql_cursor.execute("SELECT * FROM books WHERE name='Book5000'")
 mysql_cursor.fetchall()
 end = time.time()
 print(f"MySQL – simple query: {end - start:.6f} seconds")

 start = time.time()
 mysql_cursor.execute("""
 SELECT users.*
 FROM users
 JOIN user_books ON users.id = user_books.user_id
 JOIN books ON books.id = user_books.book_id
 WHERE books.name = 'Book5000'
 """)
 mysql_cursor.fetchall()
 end = time.time()
 print(f"MySQL – complex query: {end - start:.6f} seconds")

def measure_mongodb():
 start = time.time()
 mongo_books.find({"name": "Book5000"})
 end = time.time()
 print(f"MongoDB – simple query: {end - start:.6f} seconds")

 start = time.time()
 mongo_users.find({"books": {"$elemMatch": {"name": "Book5000"}}})
 end = time.time()
 print(f"MongoDB - complex query: {end - start:.6f} seconds")

Listing 2. measure_mysql() and measure_mongodb() functions written in Python

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

541

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Tables and collections were created in the Python
script. Also, the data used for the benchmark was pre-
pared by automatically inserting the small and large
datasets in the Python script.

Based on the application's needs, the chosen simple
benchmarking query was finding a book by title, and
the complex benchmarking query was finding users
who own a specific book. Execution time in seconds
was measured using Python’s time.time() function be-
fore and after query execution. The scalability tests were
performed by scaling datasets from 10 to 10,000 books
and 11 to 1,001 users to analyze the performance fluc-
tuation. Listing 2 shows measure_mysql() and measure_
mongodb() functions written in Python used to execute
queries and measure execution time.

5. RESULTS AND DISCUSSION

The measured query execution time of MySQL and
MongoDB with different dataset sizes are shown in
Table 1.

As shown in Table 1, MySQL simple query execu-
tion time is 11.9864 times faster for smaller datasets and
3.2198 times faster for bigger datasets than MongoDB.
The result is due to the way data is stored, database con-
straints, and data normalization. MySQL is faster than
MongoDB because it uses an index and searches directly
on the table. As the data volumes increase, query execu-
tion time increases for both databases with MySQL re-
maining to be faster. This indicates that indexed search
in MySQL scales is better for simple queries than in
MongoDB.

Table 1. Benchmark results

MySQL MongoDB
Dataset size Smaller dataset Bigger dataset Smaller dataset Bigger dataset
Simple query execution time (seconds) 0.000516 0.003316 0.006185 0.010677
Complex query execution time (seconds) 0.003165 0.011179 0.000073 0.000045

Table 2. Practical guidelines for optimal database selection

SQL database
characteristics

tabular data models for storing structured data in a fixed schema; vertical scalability (increasing/upgrading the
server’s hardware components); scalability can be improved by using cloud-based technologies; client-server archi-
tecture; can have a multi-server architecture by using shared storage technology; using Structured Query Language
(SQL) for defining, manipulating, querying, and managing data; better performance for small/limited datasets and
few database operations; better join query performance; less CPU resources and memory usage for task completion;
master-slave replication through a cluster-based architecture; ACID database transaction model; follows CAP theo-
rem (prioritizing consistency and availability); strong data consistency; assure data integrity and transaction con-
sistency; the data storage performance degrades as the data volume increases; offers extensive integration support;

NoSQL
databases
characteristics

non-tabular data models such as document-based, key-values, column-based, or graph-based for storing unstruc-
tured data in a flexible schema; cost-effective due to horizontally scalable (increasing/upgrading servers and in-
stances) and open-source free solutions; scalability is easy to implement; multi-server architecture; using Not Only
Structured Query Language (NoSQL) tailored to their specific data models for defining, manipulating, querying,
and managing data; better performance for large datasets; faster storing and retrieving complex data types (images
as byte data); master-slave replication through replica sets; BASE database transaction model; follows CAP theorem
(prioritizing tolerance and availability); eventual data consistency; lack full support for ACID features; less robust-
ness; high-velocity and scalability; provides modern APIs and flexible data formats for seamless integration with
microservices and cloud-native architectures;

SQL is suitable
for

e-commerce applications; transaction applications; financial systems; enterprise resource planning (ERP) systems;
customer relationship management (CRM) systems; applications that require complex queries, relationships, and
transactions; applications that require strong data integrity; inventory control; applications with stable workloads;
applications with multi-row transactions; payment processing; core banking systems;

NoSQL is
suitable for

big data analytics; recommendation systems; Internet of Things (IoT); cloud-based applications; real-time analytics;
content management systems; social networks; applications with large or constantly evolving data sets; applications
focused on rapid data access, flexible data models, and scalability; high traffic loads; unpredictable traffic spikes;
managing user-generated data, real-time updates, product catalogs, and inventory data; agile applications where
requirements evolve over time; data mining applications; real-time fraud detection; personalized finance services;

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

542

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

As shown in Table 1, MongoDB complex query
execution time is 43.3562 times faster for smaller data-
sets and 248.4222 times faster for bigger datasets than
MySQL. The result is due to the way data is stored,
complex join, and data normalization. MongoDB is
significantly faster than MySQL because the search
is performed directly, while MySQL requires join-
ing data from multiple tables and filtering the results.
When the database is large, MongoDB remains con-
sistently fast (even faster than with a smaller database),
while MySQL's execution time increases significantly.
This suggests that MongoDB is better for complex que-
ries as it does not need expensive JOIN operations like
MySQL. As data grows, MySQL's complex queries be-
come significantly slower, while MongoDB remains ef-
ficient.

Utilizing both the guidelines, shown in Table 2, and
benchmark results, shown in Table 1, the most optimal
database solution for the ‘BooksByHM’ application is a
hybrid database approach that combines the strengths
of MySQL and MongoDB. For optimal performance,
MySQL would be used for structured data (users, pur-
chases, and ratings), transaction processing, core bank-
ing operations, and dynamic content generation (SEO
optimization). On the other hand, MongoDB would be
used for content storage and interactions (books, com-
ments, and likes), real-time analytics, real-time fraud
detection, customer management, large-scale data pro-
cessing, personalized recommendations, storing and
retrieving images (as binary data) and audiobook files,
searching books, managing nested comments, and gen-
erating statistical insights.

6. CONCLUSION

The research contributes by presenting practical
guidelines for optimal database selection and an SDLC-
independent Python-based query performance bench-
mark. The hypothesis was successfully tested with both
the guidelines and benchmark results. The hybrid ap-
proach can utilize the strengths of both MySQL and
MongoDB by allowing tailored database solutions to
the “BooksByHM” application’s needs. The benchmark-
ing approach highlighted in this research can be used to
analyze the data flow and performance in real-time, as
well as simulate database solutions and test their perfor-
mance without needing to have a concrete application.
This is the reason why this benchmarking approach is
SDLC-independent. Following the established practical
guidelines for optimal database selection and imple-

menting the SDLC-independent Python-based query
performance benchmarking approach is particularly
useful in the early stages of development or when con-
sidering a migration to an existing project. The research
highlights the importance of selecting the right database
solution and demonstrates that the benchmarking pro-
cess can be both simple and efficient using Python. It
aims to encourage and motivate developers to experi-
ment with and test different database solutions. Addi-
tionally, it serves as an accessible and engaging experi-
ment that anyone can try in their spare time. However,
this study represents just the tip of the iceberg in the
field of benchmarking. Future directions of this research
could explore additional benchmarking methods us-
ing Python to further enhance database performance
evaluation.

REFERENCES

[1] H. Paci, "SQL vs NoSQL databases from developer
point of view," Industry 4.0, vol. VII, no. 3, pp. 95-
97, 2022.

[2] T. Ramzan and G. Alwin, "Comparative Study of
SQL vs. NoSQL for High-Performance E-commerce
Databases," pp. 1-18, 2023.

[3] M. Z. Khan, F. U. Zaman, M. Adnan, A. Imroz, M.
A. Rauf and Z. Phul, "Comparative case study: An
evaluation of performance computation between
SQL and NoSQL database," Journal of Software
Engineering, vol. I, no. 2, pp. 14-23, 2023.

[4] R. Pandey, "Performance benchmarking and
comparison of cloud-based databases MongoDB
(NoSQL) vs MySQL (Relational) using YCSB," Nat.
College Ireland, Dublin, Ireland, Tech. Rep, 2020.

[5] D. Liberman, "Migration from NoSQL to SQL,"
2023.

[6] R. H. Saavedra and A. J. Smith, "Analysis of bench-
mark characteristics and benchmark performance
prediction," ACM Transactions on Computer Sys-
tems (TOCS), vol. XIV, no. 4, pp. 344-384, 1996.

[7] M. Yeşilyurt and Y. Z. Ayik, "Comparison of C# and
Python programming languages in terms of perfor-
mance and coding on SQL server DML operations,"
NanoEra, vol. IV, no. 1, pp. 23-33, 2024.

[8] Є. С. Тимошенко, "Робота з базами даних в
python: SQL та NOSQL," 2024.

[9] A.-G. Babucea, "SQL OR NoSQL DATABASES?
CRITICAL DIFFERENCES," Annals of'Constantin
Brancusi'University of Targu-Jiu. Economy Series/
Analele Universităţii'Constantin Brâncuşi'din Târ-
gu-Jiu Seria Economie, no. 1, 2021.

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

543

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

[10] R. Čerešňák and M. Kvet, "Comparison of query
performance in relational a non-relation databases,"
Transportation Research Procedia, vol. XL, pp. 170-
177, 2019.

[11] Y. Jani, "The role of sql and nosql databases in
modern data architectures," International Journal
of Core Engineering & Management, vol. VI, no. 12,
pp. 61-67, 2021.

[12] K. Milojković, M. Živković and N. B. Džakula, "Ag-
ile Multi-user Android Application Development
With Firebase: Authentication, Authorization, and
Profile Management," Sinteza 2024-International
Scientific Conference on Information Technology,
Computer Science, and Data Science. Singidunum
University, pp. 405-412, 2024.

[13] J. Antas, R. R. Silva and J. Bernardino, "Assessment
of SQL and NoSQL systems to store and mine
COVID-19 data," Computers, vol. XI, no. 2, p. 29,
2022.

[14] R. A. Kadir, E. S. M. Surin and M. R. Sarker, "A
Systematic Review of Automated Classification for
Simple and Complex Query SQL on NoSQL Data-
base," Computer Systems Science & Engineering, vol.
XLVIII, no. 6, 2024.

[15] S. A. FADHEL and E. A. JAMEEL, "A Comparison
between NoSql and RDBMS: Storage and Retrieval,"
International Journal of Applied Sciences and Tech-
nology, vol. IV, no. 3, pp. 173-184, 2022.

[16] P. Gowda and A. N. Gowda, "SQL vs. NoSQL
databases: Choosing the right option for FinTech,"
Journal of Scientific and Engineering Research, vol.
VII, no. 8, pp. 100-104, 2020.

[17] D. Milojković and K. Milojković, "Improving the
Business Resilience of an Organization by Apply-
ing Agile Project Managemet Approach," FINIZ
2022-Business Resilience in a Changing World, pp.
98-103, 2022.

http://sinteza.singidunum.ac.rs

