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A COMPARATIVE STUDY OF OBJECT DETECTION ALGORITHMS 
FOR SECURITY APPLICATIONS

Abstract: 
Currently, there are many different computer vision models available, and each 
has its unique characteristics. Selecting the most suitable and, importantly, 
well-performing model can be challenging for companies and researchers 
who plan to use artificial intelligence to solve their problems. This study 
aims to evaluate the performance of four prominent computer vision models: 
YOLOv5, Faster R-CNN, SSD 300, and RetinaNet. The models were assessed 
on their ability to detect and classify weapons in images. The primary metrics 
used for evaluating their performance are mAP@50 and mAP@50-95. The 
dataset used for testing these models is taken from the well-known dataset 
platform Kaggle and consists of images of various types of weapons sorted 
by class. This circumstance also makes it possible to associate this research 
with the field of security and its automation. Experimental results identified 
YOLOv5 as the best-performing model among the four. The overall perfor-
mance was constrained by the dataset’s limited size and image quality, with 
the highest mAP@50 reaching 0.8. The findings of this study offer practical 
insights for companies seeking effective computer vision solutions, as well 
as for researchers examining the development and comparative performance 
of object detection models.
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Security Applications.

INTRODUCTION

The field of artificial intelligence, specifically computer vision, has 
become one of the most active and impactful areas of research in recent 
years. Computer vision technologies enable the automation and simpli-
fication of numerous tasks across various domains[1]. This study focuses 
on a key capability of this technology, object detection in images, a 
fundamental task in computer vision. In addition to detecting objects, 
the models are also evaluated on their ability to classify them into relevant 
dataset categories. Various types of weapons, including both firearms 
and edged weapons, served as the objects to be identified.
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The ability to promptly recognise dangerous objects 
is both critical and highly valuable[2]. There are numer-
ous environments where enhanced security is essential, 
including airports, schools, hospitals, and ports[3]. In 
most of these locations, security is managed by humans, 
which inherently introduces risks associated with hu-
man factors such as fatigue, distraction, or even neg-
ligence[4]. Computer vision-based tools in this area 
mainly aim to enhance security, reduce the likelihood 
of human errors, and improve monitoring capabilities 
for video and image data obtained from surveillance 
cameras or other information transmitters[5].

Successfully performing all the tasks outlined above 
requires artificial intelligence systems to be trained on 
a properly constructed dataset and based on a high-
quality model capable of effective training and demon-
strating high performance in accomplishing the given 
tasks. Consequently, conducting a comparative analysis 
of state-of-the-art models is essential to determine the 
most suitable candidates for such applications. Despite 
the availability of numerous object detection models, 
their comparative performance in real-world security 
contexts, especially with limited-quality datasets, re-
mains underexplored. This raises the key research ques-
tion: Which object detection model performs best in 
identifying and classifying weapons in images under 
constrained data conditions? This research compares 
four popular and widely used computer vision models, 
YOLOv5 [6], R-CNN [7], SSD 300 [8], and RetinaNet 
[9], to identify the most efficient one, defined as the 
model demonstrating the highest accuracy in object 
detection tasks. The models' performance is evaluated 
based on two key metrics mAP@50 [10] and mAP@50-
95 [11]. Additionally, the study outlines the dataset 
preparation process for model training, emphasizing 
its critical role in the successful application of artificial 
intelligence in computer vision. 

This work contributes by providing a practical com-
parison of these models on a real-world dataset involv-
ing weapon detection, offering insights into their suit-
ability for security applications under constrained data 
conditions.

The rest of the paper is organised as follows: Sec-
tion 2 describes the methodology. Section 3 presents 
the experimental setup, the dataset used, and the results 
along with their analysis. Section 4 concludes the paper 
by summarising the key findings.

2. METHODOLOGY

The computer vision models used in this research 
have different architectures. For instance, YOLOv5, SSD 
300, and RetinaNet are single-stage detectors, whereas 
Faster R-CNN is a two-stage detector. The primary dif-
ference between these two approaches lies in the num-
ber of processing stages required for detecting and clas-
sifying objects within an image: a single-stage detector 
needs just one pass, while a two-stage detector requires 
two. During the first stage, region proposal networks 
(RPN) are generated, and region of interest (ROI) pool-
ing is performed to extract features for each candidate 
region. The second stage in this architecture is respon-
sible for classifying detected candidates and refining 
their bounding boxes. As a result, the two-stage detector 
requires more processing time per image compared to 
single-stage models, which can be a critical considera-
tion for real-time or resource-constrained applications.

Single-stage object detectors generally follow a mod-
ular architecture comprising three main components: 
(i) the backbone, (ii) the neck, and (iii) the head. While 
they share this overall structure, the specific implemen-
tations can vary significantly across models at both high 
and low abstraction levels. For models such as YOLOv5, 
SSD 300, and RetinaNet, the backbone is the main con-
volutional neural network responsible for feature extrac-
tion from the original image. As a result, the backbone 
identifies both high-level and low-level features. High-
level features include shapes and objects, while low-level 
features correspond to edges and textures [12].

To combine low-level and high-level features, a 
component known as the neck is used. The neck is an 
additional set of layers, which acts as a bridge between 
the backbone and the head, aggregating and refining 
feature maps from different levels to enhance detec-
tion performance. This component creates multi-scale 
image representations and is implemented in YOLOv5 
and RetinaNet. However, YOLOv5 uses two algorithms 
for its neck, Spatial Pyramid Pooling – Fast (SPPF) [13] 
and Path Aggregation Network (PANet) [14], whereas 
RetinaNet employs the Feature Pyramid Network (FPN) 
[15]. The SSD 300 model does not have a neck compo-
nent as such, instead, it adds extra convolutional layers 
after the backbone. These additional layers create multi-
scale feature maps, enabling the detection of objects of 
varying sizes.

The final component in these models is the head, 
which generates predictions based on the feature maps 
received from the neck. It is responsible for producing 
the model’s outputs, including object classifications and 
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bounding box coordinates. Although the implementation 
of the head varies across models, they all incorporate 
a multi-scale prediction mechanism, which allows the 
model to make predictions at different feature levels. 
This approach enhances the detection of objects of 
varying sizes by leveraging both fine and coarse spatial 
information.

Another distinguishing feature among the four 
models is the resolution of the input images they process. 
YOLOv5 uses a default resolution of 640×640, while 
SSD 300 operates on 300×300 pixel inputs. RetinaNet 
and Faster R-CNN use variable input sizes, typically 
with the shorter side resized to 800 pixels and the longer 
side not exceeding 1333 pixels. Further details regarding 
each model's configuration are provided in Section 3.1, 
Experimental Setup.

As mentioned earlier, the metrics mAP@50 (Mean 
Average Precision at 50% IoU) and mAP@50–95 were 
used to assess the performance of each model. These met-
rics evaluate how accurately a model detects and local-
ises objects based on the overlap between predicted and 
ground-truth bounding boxes. mAP@50 measures the av-
erage precision when the Intersection over Union (IoU) 
threshold is fixed at 0.50. In contrast, mAP@50–95 is a 
more comprehensive metric that calculates the mean of 
average precision scores across ten IoU thresholds, rang-
ing from 0.50 to 0.95 in increments of 0.05, thereby offer-
ing a more rigorous assessment of model performance.

Additionally, precision and recall metrics are reported 
for each model in this study. Precision indicates the 
proportion of correctly detected objects among all 
detected instances, while recall measures the proportion 
of correctly detected objects relative to the total number 
of ground-truth objects in the dataset.

3. EXPERIMENTAL RESULTS AND 
DISCUSSION

The experiment conducted in this study aimed to 
evaluate and compare the performance of each model on 
the available dataset. All experiments were implemented 
in PyTorch and executed using an NVIDIA T4 GPU.

3.1. DATASET PREPARATION

The dataset used in this research, titled "Weapon 
Detection Dataset", was sourced from Kaggle and con-
tains 714 images of weapons belonging to nine distinct 
classes: Automatic Rifle, Bazooka, Handgun, Knife, Gre-
nade Launcher, Shotgun, SMG, Sniper, and Sword. In 
addition to the images, the dataset includes a description 
file with metadata and YOLO-format annotations stored 
as plain text files. The dataset was initially divided into 
training and validation sets in an 80/20 ratio.

During dataset preparation, extensive work was 
performed to identify and remove duplicate images 
and to prevent data leakage from the training set to the 
validation set. Additionally, many classes in the annota-
tions were modified, as they did not match the classes 
described in the accompanying file and incorrectly rep-
resented the objects shown in the images. The final step 
in dataset preparation involved creating COCO annota-
tions based on the corrected YOLO annotations. This 
step was necessary to train the SSD 300, RetinaNet, and 
Faster R-CNN models since they cannot work directly 
with YOLO annotations.

Figure 1 shows one example of the images taken 
from the dataset, displaying bounding boxes and class 
IDs after completing all the data preprocessing steps 

Figure 1. Sample image with bounding boxes from the dataset

http://sinteza.singidunum.ac.rs


Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

527

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

described above. As a result, 500 images remained in 
the dataset, with 88% allocated for training and 12% for 
validation.

3.2. EXPERIMENTAL SETUP

Each of the four models was trained for 75 epochs. 
The batch size and number of data loading workers 
were kept consistent across all models, while the learn-
ing rate and input image resolution varied depending 
on the model architecture and its requirements. Table 
1 summarises the key training parameters, including 
the image sizes that produced the best mAP@50 and 
mAP@50–95 results for each model.

It is also worth noting the significant difference in 
configuring SSD 300, Faster R-CNN, and RetinaNet 
compared to YOLOv5. The latter offers a much simpler 
and more compact configuration process.

3.3. EXPERIMENTAL RESULTS AND DISCUSSION

This subsection describes the results of experiments 
conducted using all four computer vision models on a 
dataset containing images of various types of weapons. 
Table 2 presents the comparative analysis.

Based on the comparative analysis results, the model 
that demonstrated the best performance was YOLOv5. 
The mAP@50 metric was equal to 0.8, and mAP@50-95 
reached 0.57, indicating strong object localisation and 
classification performance. Precision of 75% and recall 

of 77% suggest that the model occasionally makes mis-
takes in identifying the desired objects in images. How-
ever, these metrics are very close to each other, indicat-
ing that YOLOv5 has indeed learned to reliably detect 
target objects. Given that recall is at 77%, the quality of 
predictions remains high, meaning the number of false 
positives is relatively low. This is further supported by 
the small difference between precision and recall, only 
2%. It is worth noting that the model ultimately man-
ages to detect certain types of weapons in images quite 
successfully, thus fulfilling its intended purpose. Ad-
ditionally, the model could be further fine-tuned using 
additional data to improve its results. 

Figure 2 illustrates the confidence points in the 
YOLOv5 model's predictions, as well as boundary boxes. 
As can be seen in the image, the model can quite reliably 
detect classes such as SMG, sword, and handgun, with con-
fidence scores ranging from 0.8 to 0.9. However, YOLOv5 
still struggles to accurately identify classes like shotgun and 
knife, with confidence points ranging from 0.6 to 0.7.

The second-best performing model was Faster 
R-CNN. This model demonstrated results close to 
YOLOv5 with metrics mAP@50 and mAP@50-95 equal 
to 0.75 and 0.53, respectively, which are satisfactory out-
comes. However, the model's precision (53%) and recall 
(60%) were considerably lower than those of YOLOv5. 
Due to these low precision and recall scores, the model 
is likely to perform poorly in detecting weapons within 
images, and it may be less reliable in real-world weapon 
detection tasks.

Table 1. Parameter configuration

Model Batch size Learning rate Workers Image size (pixels)

YOLOv5 4 1e-2 2 640 (long side)

SSD 300 4 1e-4 2 300x300

RetinaNet 4 1e-4 2 512x512

Faster R-CNN 4 1e-4 2
800 (short side), max 1333 (long side), 
aspect ratio preserved

Table 2. Comparative analysis

Model mAP@50 mAP@50-95 Precision Recall

YOLOv5 0.80 0.57 75% 77%

SSD 300 0.57 0.36 36% 52%

RetinaNet 0.38 0.20 20% 48%

Faster R-CNN 0.75 0.53 53% 60%
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SSD 300 ranks third, with a mAP@50 of 0.57 and 
mAP@50-95 of 0.36. Such low metrics indicate that the 
model struggles to accurately identify object boundaries. 
In addition to this issue, SSD 300 demonstrated low ac-
curacy in correct predictions: specifically, a recall of 52% 
combined with a high number of false positives, as shown 
by a low precision of 36%. Likely, due to generating many 
predictions, including incorrect ones, the model captures 
some true positives, thereby increasing recall. However, 
this also means that the model did not effectively learn to 
recognise the desired objects in images.

RetinaNet showed the worst results. Its mAP@50 
and mAP@50-95 metrics were just 0.38 and 0.20, re-
spectively. This clearly indicates that the model does not 
effectively detect correct object boundaries. Precision 
was only 20% yet recall reached an unexpectedly high 
48%. Based on these figures, many false positives were 
observed, reflecting low model selectivity. RetinaNet es-
sentially failed to learn how to properly detect various 
types of weapons in images.

The results described above can be attributed, in 
part, to limitations in the dataset. For YOLOv5 and 
Faster R-CNN, dataset limitations were the main obsta-
cle to achieving more accurate predictions. The dataset 

has several systemic issues that collectively prevented 
these models from performing better. Specifically, the 
dataset contains 9 classes of various weapons but only 439 
training images, which is insufficient to teach the model 
to correctly detect each class. Indirect confirmation of 
this issue is shown in Table 3 below.

As seen from the table, mAP@50 and mAP@50-95 
scores differ significantly across weapon types, indi-
cating that the model particularly struggled to identify 
automatic rifles and bazookas in images. At the same 
time, this issue was not due to an insufficient number of 
epochs. YOLOv5 and Faster R-CNN extracted the maxi-
mum amount of information available from the dataset 
used. This conclusion can be drawn from the graphs 
illustrating the growth of mAP@50 and mAP@50-95 
over epochs.

Figure 2. YOLOv5 predictions for validation dataset

Table 3. Per-class evaluation metrics for YOLOv5

Class mAP@50 mAP@50-95

Automatic Rifle 0.65 0.53

Bazooka 0.70 0.37

Handgun 0.90 0.73

Shotgun 0.90 0.66
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As evident from the graphs above, both metrics 
plateaued around the 20th epoch, indicating that further 
increases in epoch count would be pointless. Expanding 
the original dataset would yield a greater improvement.

Regarding SSD 300, the most probable reason for 
its poor results was the limitation of input image size. 
The dataset contains images of various dimensions, 
and resizing larger images down to 300x300 inevitably 
results in losing some low-level features. This leads to 
degradation in the results for mAP@50 and mAP@50-95 
metrics for this model.

For RetinaNet, which demonstrated the lowest per-
formance, various input resolutions were tested, but the 
most effective was found to be 512x512. Despite this, 
RetinaNet exhibited a similar plateau on the accuracy 
graph as shown in Figure 3, likely indicating that Reti-
naNet's internal algorithms are less effective compared 
to the other tested models [16].

4. CONCLUSION

This research addressed the core research question 
by comparatively evaluating four object detection mod-
els, YOLOv5, SSD 300, RetinaNet, and Faster R-CNN, 
on a security-relevant dataset. Despite certain systematic 
issues with the dataset, two models achieved good re-
sults according to the metrics mAP@50 and mAP@50–
95. YOLOv5 demonstrated the best performance across 
all parameters. The mAP@50 for this model reached 
0.80, which is a respectable result, though it could be 
further improved by expanding and refining the dataset. 

This work contributes to a clearer understanding of the 
strengths and limitations of these popular object detec-
tion models in the context of weapon detection, poten-
tially assisting researchers and industry practitioners 
in selecting and adapting models for real-time security 
applications. Additionally, the study highlighted poten-
tial shortcomings in SSD 300 and RetinaNet, offering 
insights for future improvements.

Future research should focus on evaluating these 
models on more diverse and larger datasets, exploring 
fine-tuning strategies, and testing in real-world surveil-
lance scenarios to assess their robustness and generalisa-
tion capabilities.
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