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IMPLEMENTATION OF THE DEBUGGING SUPPORT FOR THE 
LLVM OUTLINING OPTIMIZATION

Abstract: 
Outlining optimization has been used in compilers predominantly to decrease 
the code size and sometimes even to improve its efficiency. If a code segment 
is repeated at various places in the code, the compiler can encapsulate it into 
a function and then it replaces these segments with the function calls. The 
LLVM infrastructure supports the outlining optimization but lacks proper 
debugging information in such cases and an outlined function cannot be dif-
ferentiated from some other compiler-generated code at debug time. This paper 
proposes the complete solution to this problem on three levels of abstraction: 
IR and Machine IR code, DWARF format, and LLDB debugger. It identifies 
the reason for insufficient precision of the previous debugging information 
and describes in detail the implementation focused on enhancing these data 
so that the outlined function can be exactly recognized during debugging. The 
implementation has been thoroughly tested through regression and custom 
tests and it was made publicly available. In practice, the enhanced debugging 
information for outlining has proven to be useful.
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INTRODUCTION

In addition to its basic purpose of generating executable code, an 
important goal of a compiler is to make such code as efficient as possible, 
regarding both execution speed and memory usage. To this end, numer-
ous optimizations are applied at various places to transform the code into 
its improved equivalent [1]. One of them is the outlining optimization 
supported by some compilers. Its main goal is to extract the same, repli-
cated code from different places in the program into a new function and 
to replace all occurrences of the segment with a corresponding function 
call. In this way, the entire code size is decreased, and memory consump-
tion is improved.

The compilers need to overcome the high abstraction level and pro-
duce efficient code, so they consist of many components. The compila-
tion runs in certain consecutive phases that sometimes partly overlap. 
Thus, the compilers are quite complex and hard to develop. Because of 
that, it is very important to have some suitable infrastructure platforms 
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that make creating the compilers for arbitrary languages 
and target machines less demanding. They provide 
ready-made tools and projects that can be used and cus-
tomized for the development of a proprietary compiler. 
One of the best-known and widely used platforms is the 
LLVM infrastructure [2]. Besides the tools used in the 
compilation process, e.g. Clang front-end compiler for 
C and C++ languages, LLVM contains rich support for 
debugging providing a vast amount of data about the 
program, stored in a convenient form.

LLVM does support the outlining optimization pass, 
but there is a problem related to information relevant to 
the debugging process since the outlined code cannot be 
differentiated from the code generated in some other way. 
To allow better precision in the interpretation of the code 
and to enable more efficient debugging, it is necessary to 
enhance the LLVM infrastructure with some additional 
information that indicates the occurrence and location of 
the outlined code. This paper proposes a solution to the 
previous problem by expanding debugging-related infor-
mation in the context of outlining optimization. The pro-
posal is successfully implemented and thoroughly tested 
using LLVM and LLDB testing infrastructures. 

The second section of this paper explains the out-
lining optimization itself, its benefits, and how it is 
performed. The third section focuses on the solution 
proposal and describes its implementation on all three 
levels in detail. The implementation is illustrated with 
the appropriate code segments. The conclusion summa-
rizes the paper.

2.	 OUTLINING OPTIMIZATION

Outlining is an optional part of the compilation 
process that removes a part of the code from a function 
and replaces it with the call of the new function, which 
consists of the removed code [3]. The new function is 
artificially generated by the compiler (more precisely, by 
its optimizer), and we say that the function is outlined. 
This process is the opposite of the more frequently em-
ployed inlining optimization that embeds the body of 
a function at its call site, to speed up the program by 
eliminating the function-call overhead. Since the same 
function can be inlined at multiple call sites, if not ap-
plied selectively, this optimization may cause severe 
code growth [4].

On the other hand, outlining results in additional 
calls of the newly created function, which can slow 
down the execution. However, it pays off by decreas-
ing the code size if the same outlined code is replicated  

multiple times. Therefore, outlining optimization is useful 
predominantly in systems where memory is a critical 
resource, but which are also fast enough so that the 
additional function calls don’t result in significant 
performance degradation (e.g., microcontrollers).

Typical applications of outlining are: code refactor-
ing or extraction of the kernel in compilers which trans-
form the source code written in one language to another 
[5], and shortening of large functions to decrease the 
compilation time in JIT compilers [6]. Another source 
of potential performance gain can be obtained in cases 
when a large, frequently called function (hot function) 
contains some rarely executed regions (cold code) [3]. 
Outlining of cold code sections from a hot function can 
have at least three advantages:

1.	 Removing cold code from a large hot function 
can make it small enough to apply inlining;

2.	 Outlining the cold code can improve the cache 
memory efficiency by preserving the spatial locality 
of hot code;

3.	 Outlining the cold code from a hot function can 
also improve memory bandwidth during instruc-
tion fetching, which is important for modern 
superscalar and VLIW architectures.

Outlining optimization in the LLVM infrastructure 
can be carried out on both IR and MIR code levels. The 
algorithm of outlining on the MIR level consists of the 
following phases [6]:

1.	 Identification of the candidates – In this initial 
phase, all basic blocks [1] in the program are 
searched for the longest repeated sequence of in-
structions. This resembles the problem of finding 
the longest common substring where basic blocks 
act as strings and instructions act as characters. 
This problem can be solved by using the suffix 
tree program representation;

2.	 Removing unsafe or useless candidates – After the 
candidates are found, the potential adverse effects 
of their outlining should be examined (e.g., some 
instructions like conditional branches cannot be 
safely extracted from the function). Thus, unsafe 
candidates are rejected as well as those candidates 
that do not contribute to the decrease of the code 
size. The formula for calculating the usefulness of 
the outlining process is given in [6];

3.	 Function sharing – After the list of candidates is 
finalized, code transformation takes place. The 
new functions are created, and each candidate is 
replaced with the corresponding calls. 
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3.	 IMPLEMENTATION

Although the LLVM infrastructure supports the 
outlining optimization, its implementation is not com-
plete enough as far as the debugging information is con-
cerned. As for the debugging data, LLVM treats the new 
functions generated in case of outlining the same way as 
any other compiler-generated code. This shortcoming 
motivated us to propose a solution within the LLVM 
that makes a distinction between outlined code and other 
compiler-generated code [7]. This solution required 
some modifications on three levels of abstraction: IR and 
MIR code, DWARF format, and LLDB debugger. This 
proposal covers a wide range of the LLVM debug infor-
mation that is useful for both the user and programmer 
to see whether the outlining is applied somewhere in 
the code. Support for these three levels is presented in 
the following text. The entire implementation is publicly 
available [8]. 

3.1. THE IR AND MIR CODE LEVELS

IR (intermediate representation) code used in LLVM 
is generated by the front-end and the middle-end (i.e., 
the optimizer) of the compiler [9]. Its advantages are 
the architectural independence and separation between 
the compiler front-end and back-end, which enables the 
different implementations of these two parts to connect 
and work together. This kind of intermediate code is 
very suitable for optimizations. MIR (machine-specific 

intermediate representation) is also a type of intermediate 
code that is used in LLVM in the compiler back-end. 
It is generated after the instruction selection phase of 
the compilation. MIR code is also very convenient for 
target architecture-aware optimizations that are per-
formed in the back-end. When debugging information 
is enabled, IR code keeps it in the form of the LLVM 
metadata. Since MIR is an extension of IR and each MIR 
module contains a corresponding IR module, MIR refers 
to the same metadata with debug information from 
the contained IR module. All metadata in the LLVM in-
frastructure represents class objects derived from the 
llvm::Metadata base class [10].

Outlining optimization in the LLVM infrastructure 
is implemented on both IR and MIR levels at the 
module level in their runOnModule functions. Besides 
the generation of an outlined function, its corresponding 
metadata node DISubprogram is also created by calling 
createFunction of the DIBuilder class. For this node, 
there is the DINode::DIFlags::FlagArtificial flag that is 
set to indicate that the function is artificially created by 
the compiler. Listing 1 shows a part of the IR file for the 
sample program after outlining two functions outlined_
ir_func_0 and outlined_ir_func_1. The DISubprogram 
metadata nodes for them contain DIFlagArtificial indi-
cator which informs that these functions are artificially 
generated by the compiler. However, it is not clear that 
they are outlined.

; Function Attrs: nounwind uwtable
define dso_local i32 @main() #0 !dbg !7 {
entry:
  %x = alloca i32, align 4
  %y = alloca i32, align 4
  call void @outlined_ir_func_1(i32* %x), !dbg !14
  call void @outlined_ir_func_1(i32* %y), !dbg !14 
  call void @outlined_ir_func_0(i32* %x, i32* %y), !dbg !14
  call void @outlined_ir_func_0(i32* %y, i32* %x), !dbg !14
  ret i32 0
}

!15 = distinct !DISubprogram(name: "outlined_ir_func_0", linkageName: "outlined_ir_func_0",
scope: !1, file: !1, type: !16, flags: DIFlagArtificial, spFlags: DISPFlagDefinition |
DISPFlagOptimized, unit: !0, retainedNodes: !17)
!16 = !DISubroutineType(types: !17)
!17 = !{}
!18 = !DILocation(line: 0, scope: !15)
!19 = distinct !DISubprogram(name: "outlined_ir_func_1", linkageName: "outlined_ir_func_1",
scope: !1, file: !1, type: !16, flags: DIFlagArtificial, spFlags: DISPFlagDefinition |
DISPFlagOptimized, unit: !0, retainedNodes: !17)

Listing 1. A part of the resulting IR file after the outlining is applied to a sample program [7]
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The solution to this problem is found in the addi-
tion of a new flag named Outlined in the DIFlags enum 
statement. This enum statement contains all flags for 
some metadata and it is a part of the DINode class also 
inherited by the DISubprogram class. The role of the new 
flag is to reflect the information that the corresponding 
DISubprogram is an outlined function. Like all other 
flags, the Outlined flag is declared in llvm/include/llvm/
IR/DebugInfoFlags.def file, whose content is included in 
the enum statement. The flag was then added by creating 
an appropriate call of the HANDLE_DI_FLAG macro, 
which has previously been defined in the DIFlags enum 
statement. After that, the definition of the Largest flag 
was also updated accordingly. These code modifications 
are shown in Figure 1.

After adding the new flag, its use on both IR and MIR 
levels was implemented. When an outlined function and 
its corresponding DISubprogram object are created, in-
stead of a more general DINode::DIFlags::FlagArtificial 
indicator which tells that the function does not exist in 
the source code, the new DINode::DIFlags::FlagOutlined 
flag is set. It provides more precise information about 
the nature of the compiler-generated function, as illus-
trated in Figure 2. Modification on the MIR level was 
performed in a quite similar manner. 

Now, after the outlining is applied, debugging infor-
mation in the previous example is shown in Listing 2.

3.2. DWARF FORMAT LEVEL

The DWARF format is one of the most frequently 
used formats for debugging information [11]. Accord-
ing to DWARF, debug information is represented as a 
tree-like structure. Hence, it consists of the DIE nodes 
connected by basic parent-children relationships. The 
characteristics of program entities represented by the 
DIE objects are described by a versatile set of attributes 
of different types (can even be a reference to some other 
DIE node).

One of the DIE objects is also the DW_TAG_subpro-
gram object which represents the function. Among other 
attributes, it contains the DW_AT_artificial attribute 
whose purpose is to denote the compiler-generated 
construct that does not exist in the source code. Again, 
this information is not precise enough in the case of out-
lined functions. Therefore, the outlined code needs to 
be distinguished from some other artificially generated 
code. 

Figure 1. Introducing the new Outlined flag [8]

Figure 2. Using the Outlined flag on the IR level [8]
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Translation of a program in LLVM acts as a pipeline. 
It enables the propagation of information generated in 
an earlier phase of compilation to the later stages. This 
property was exploited in augmenting the debugging 
information regarding outlining optimization in the 
DWARF format. 

Since the new, Outlined indicator is added on the 
IR level, it is propagated through the compiler up to the 
place where the support for building the debugging infor-
mation in DWARF format is implemented as an indica-
tion that some function is outlined. It is achieved by in-
troducing the isOutlined function in the DISubprogram 
class which checks whether the Outlined indicator for a 
given object is set. If the call of the isOutlined function 

returns a true value, the attribute DW_AT_LLVM_out-
lined is added to the corresponding DIE object repre-
senting the outlined function. This attribute is intro-
duced in the DWARF format by adding another call of 
the HANDLE_DW_AT macro with the LLVM_outlined 
argument. It was done in the part reserved for the exten-
sion of the format for the LLVM project needs, in the file 
llvm/include/llvm/BinaryFormat/Dwarf.def file as shown 
in Figure 3.

The addition of this attribute in the DIE object re-
lated to the DISubprogram metadata is shown in Figure 
4. Listing 3 shows the contents of the DW_TAG_subpro-
gram objects of the two outlined functions from Listing 
1 after the proposed modifications are implemented.

!15 = distinct !DISubprogram(name: "outlined_ir_func_0", linkageName: "outlined_ir_func_0",
scope: !1, file: !1, type: !16, flags: DIFlagOutlined, spFlags: DISPFlagDefinition |
DISPFlagOptimized, unit: !0, retainedNodes: !17)
!16 = !DISubroutineType(types: !17)
!17 = !{}
!18 = !DILocation(line: 0, scope: !15)
!19 = distinct !DISubprogram(name: "outlined_ir_func_1", linkageName: "outlined_ir_func_1",
scope: !1, file: !1, type: !16, flags: DIFlagOutlined, spFlags: DISPFlagDefinition |
DISPFlagOptimized, unit: !0, retainedNodes: !17)

Listing 2. DISubprogram metadata of the outlined functions from Listing 1 after Outlined flag is introduced [7]

Figure 3. Declaration of the DW_AT_LLVM_outlined DWARF attribute [8]

Figure 4. Adding the DW_AT_LLVM_outlined attribute to the DIE object of the function [8]
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3.3. LLDB DEBUGGER LEVEL

LLDB debugger is also developed as a part of the 
LLVM project [12]. Like every other debugging tool, it 
accepts executable code as input and then executes it 
using the debugging information, with the provided 
parameters. During the debugging process, in some situ-
ations, LLDB prints messages to the user that help him 
understand the program being executed, as well as the 
modifications of the program resulting from applied opti-
mizations. Enhancing this information regarding outlin-
ing optimization in the LLDB debugger is the main goal 
at this level.

The problem is quite like to the problems we have 
faced on the IR/MIR and DWARF levels. If a function is 
outlined, the LLDB tool recognizes it as artificially gen-
erated by the compiler, without any further explanation. 
Namely, during the execution of an outlined function, 
the LLDB debugger prints the following message „Note: 
this address is compiler-generated code that has no source 
code associated with it.“ This is a generic message which 
is printed each time some compiler-generated code is 
encountered. If the name of the function with the compiler-
generated code is known, it is also given in the previous 
message as a parameter. Whether some code is compiler-
generated or not is checked by the GetStatus method of 
the StackFrame class, which prints the description of the 
stack frame and/or source (or assembly) code context 
for this frame. This method examines whether there is a 
source code line that corresponds to the current ad-
dress during debugging. If the line field of the line_entry 
object of the LineEntry class that represents a field of 
the m_sc object of the SymbolContext class is equal to 
zero, it is an indication of an artificially generated code.

To solve the previous ambiguity, it is designed that 
the LLDB debugger prints a new, custom message when 
an outlined function is encountered. Unlike previous 
messages about compiler-generated code that appear 
only once, the new message is printed after each instruc-
tion of an outlined function is executed, provided that 
step-by-step debugging mode is active.

Implementation of this LLDB debugger extension is 
based on the Function class since it represents a con-
nection between the DWARF format and the LLDB as 
far as the function debugging is concerned. It contains 
information on whether the function represented by the 
object of this class is outlined. For this purpose, a new 
m_outlined field is added as well as the corresponding 
parameter of the class constructor for the initialization 
of the new field (the default value is false). Also, this class 
is extended with the IsOutlined method that returns the 
value of the m_outlined field.

Finally, it was necessary to implement the support 
for setting the new field in the following way. By pars-
ing the die DWARFDIE object, the ParseFunctionFrom-
DWARF method of the DWARFASTParserClang class 
creates the object of the Function class and returns the 
pointer to it. This die must have the DW_TAG_sub-
program tag, so that it represents a function. During 
the parsing of the object, a for loop that traverses all 
DWARF attributes of the object is added and, if the new 
DW_AT_LLVM_outlined attribute is found, it keeps the 
record that the function is outlined by setting a local 
variable to true. This variable is later forwarded to the 
Function class constructor as a parameter that initializes 
the m_outlined field. 

Ox0000005b:     DW_TAG_subprogram 
                  DW_AT_low_pc          (0x000000000000004e)
                  DW_AT_high_pc         (0x0000000000000052)
                  DW_AT_frame_base              (DW_OP_reg7 RSP)
                  DW_AT_linkage_name            ("outlined_ir_func_1")
                  DW_AT_name            ("outlined_ir_func_1")
                  DW_AT_LLVM_outlined           (true)
                  DW_AT_external        (true)

Ox00000065:     DW_TAG_subprogram 
                  DW_AT_low_pc           (0x000000000000003c)
                  DW_AT_high_pc          (0x000000000000004e)
                  DW_AT_frame_base               (DW_OP_reg7 RSP)
                  DW_AT_linkage_name             ("outlined_ir_func_0")
                  DW_AT_name             ("outlined_ir_func_0")
                  DW_AT_LLVM_outlined            (true)
                  DW_AT_external         (true)

Listing 3. New display of the DW_TAG_subprogram objects for two outlined functions [7]
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In this way, the information of the applied outlining 
optimization is propagated from the DWARF format to 
the LLDB tool. Previous implementation details are pre-
sented in Figure 5.

After the object of the Function class is created, it can 
be used to detect whether some function is outlined or 
not. This possibility is exploited in the GetStatus method 
of the StackFrame class. Besides reporting two previous 
messages about the existence of the artificially gener-
ated code, the new message „Note: this function is out-
lined.“ is displayed in case the IsOutlined method for 
the current function returns value true. This change is 
illustrated in Listing 4.

4.	 CONCLUSION

The debugging process is crucial for software testing 
and its efficiency essentially depends on the complete-
ness and the precision of the debugging information. 
In the LLVM project, debug data cannot recognize the 
situation when a function is compiler-generated by out-
lining. This paper proposes a solution to this problem 
by enhancing the debugging information and its appro-
priate handling. The proposal is carefully implemented 
on the three levels of abstraction: the IR and MIR code, 
DWARF format, and LLDB debugger. Thorough regres-
sion testing was carried out to verify the correctness of 
the solution. It required enhancing the existing tests and 
writing new ones.

Figure 5. Propagation of information about outlining from DWARF to LLDB [8]

if (m_sc.function && m_sc.function->IsOutlined()) {
  strm.Printf("Note: this function is outlined.");
  strm.E0L();
}

Listing 4. The new message for an outlined function in the GetStatus method of the StackFrame class [7]
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The implementation of the support for enhancing 
the debugging information in the context of the outlin-
ing optimization does not require the writing of a large 
amount of code, as can be seen from the proposed solu-
tion. Instead, it required a very demanding analysis of 
a complex project like LLVM and inserting many small 
changes at different places in the code to encompass 
all levels of abstraction in the LLVM project followed 
by exhaustive testing. Hence, the main part of the task 
is of the research type, while the implementation is a 
less demanding part. It is a typical pattern in the LLVM 
infrastructure when the modification or addition of a 
relatively small amount of code can provide a significant 
effect. There is also an idea for further improvement of 
user experience during debugging in LLDB. It can be 
achieved by providing support for the reconstruction of 
local variables in the outlined functions.
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