
233

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

DOI: 10.15308/Sinteza-2025-233-240

IMPLEMENTATION OF THE DEBUGGING SUPPORT FOR THE
LLVM OUTLINING OPTIMIZATION

Abstract:
Outlining optimization has been used in compilers predominantly to decrease
the code size and sometimes even to improve its efficiency. If a code segment
is repeated at various places in the code, the compiler can encapsulate it into
a function and then it replaces these segments with the function calls. The
LLVM infrastructure supports the outlining optimization but lacks proper
debugging information in such cases and an outlined function cannot be dif-
ferentiated from some other compiler-generated code at debug time. This paper
proposes the complete solution to this problem on three levels of abstraction:
IR and Machine IR code, DWARF format, and LLDB debugger. It identifies
the reason for insufficient precision of the previous debugging information
and describes in detail the implementation focused on enhancing these data
so that the outlined function can be exactly recognized during debugging. The
implementation has been thoroughly tested through regression and custom
tests and it was made publicly available. In practice, the enhanced debugging
information for outlining has proven to be useful.

Keywords:
Compilers, LLVM Infrastructure, Outlining Optimization, Debugging.

INTRODUCTION

In addition to its basic purpose of generating executable code, an
important goal of a compiler is to make such code as efficient as possible,
regarding both execution speed and memory usage. To this end, numer-
ous optimizations are applied at various places to transform the code into
its improved equivalent [1]. One of them is the outlining optimization
supported by some compilers. Its main goal is to extract the same, repli-
cated code from different places in the program into a new function and
to replace all occurrences of the segment with a corresponding function
call. In this way, the entire code size is decreased, and memory consump-
tion is improved.

The compilers need to overcome the high abstraction level and pro-
duce efficient code, so they consist of many components. The compila-
tion runs in certain consecutive phases that sometimes partly overlap.
Thus, the compilers are quite complex and hard to develop. Because of
that, it is very important to have some suitable infrastructure platforms

DATA SCIENCE AND APPLICATIONS SESSION

Vojislav Tomašević1*,
[0009-0000-5948-0123]
Đorđe Todorović2,
[0009-0007-6109-8127]

Maja Vukasović1

[0000-0003-0647-1922]

1School of Electrical Engineering,
 Belgrade, Serbia

2HTEC,
 Belgrade, Serbia

Correspondence:
Vojislav Tomašević

e-mail:
vojkan99@gmail.com

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15308/Sinteza-2025-233-240
https://doi.org/10.15308/Sinteza-2025-233-240
https://orcid.org/0009-0000-5948-0123
https://orcid.org/0009-0007-6109-8127
https://orcid.org/0000-0003-0647-1922

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Data Science and
Applications Session

234

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

that make creating the compilers for arbitrary languages
and target machines less demanding. They provide
ready-made tools and projects that can be used and cus-
tomized for the development of a proprietary compiler.
One of the best-known and widely used platforms is the
LLVM infrastructure [2]. Besides the tools used in the
compilation process, e.g. Clang front-end compiler for
C and C++ languages, LLVM contains rich support for
debugging providing a vast amount of data about the
program, stored in a convenient form.

LLVM does support the outlining optimization pass,
but there is a problem related to information relevant to
the debugging process since the outlined code cannot be
differentiated from the code generated in some other way.
To allow better precision in the interpretation of the code
and to enable more efficient debugging, it is necessary to
enhance the LLVM infrastructure with some additional
information that indicates the occurrence and location of
the outlined code. This paper proposes a solution to the
previous problem by expanding debugging-related infor-
mation in the context of outlining optimization. The pro-
posal is successfully implemented and thoroughly tested
using LLVM and LLDB testing infrastructures.

The second section of this paper explains the out-
lining optimization itself, its benefits, and how it is
performed. The third section focuses on the solution
proposal and describes its implementation on all three
levels in detail. The implementation is illustrated with
the appropriate code segments. The conclusion summa-
rizes the paper.

2.	 OUTLINING OPTIMIZATION

Outlining is an optional part of the compilation
process that removes a part of the code from a function
and replaces it with the call of the new function, which
consists of the removed code [3]. The new function is
artificially generated by the compiler (more precisely, by
its optimizer), and we say that the function is outlined.
This process is the opposite of the more frequently em-
ployed inlining optimization that embeds the body of
a function at its call site, to speed up the program by
eliminating the function-call overhead. Since the same
function can be inlined at multiple call sites, if not ap-
plied selectively, this optimization may cause severe
code growth [4].

On the other hand, outlining results in additional
calls of the newly created function, which can slow
down the execution. However, it pays off by decreas-
ing the code size if the same outlined code is replicated

multiple times. Therefore, outlining optimization is useful
predominantly in systems where memory is a critical
resource, but which are also fast enough so that the
additional function calls don’t result in significant
performance degradation (e.g., microcontrollers).

Typical applications of outlining are: code refactor-
ing or extraction of the kernel in compilers which trans-
form the source code written in one language to another
[5], and shortening of large functions to decrease the
compilation time in JIT compilers [6]. Another source
of potential performance gain can be obtained in cases
when a large, frequently called function (hot function)
contains some rarely executed regions (cold code) [3].
Outlining of cold code sections from a hot function can
have at least three advantages:

1.	 Removing cold code from a large hot function
can make it small enough to apply inlining;

2.	 Outlining the cold code can improve the cache
memory efficiency by preserving the spatial locality
of hot code;

3.	 Outlining the cold code from a hot function can
also improve memory bandwidth during instruc-
tion fetching, which is important for modern
superscalar and VLIW architectures.

Outlining optimization in the LLVM infrastructure
can be carried out on both IR and MIR code levels. The
algorithm of outlining on the MIR level consists of the
following phases [6]:

1.	 Identification of the candidates – In this initial
phase, all basic blocks [1] in the program are
searched for the longest repeated sequence of in-
structions. This resembles the problem of finding
the longest common substring where basic blocks
act as strings and instructions act as characters.
This problem can be solved by using the suffix
tree program representation;

2.	 Removing unsafe or useless candidates – After the
candidates are found, the potential adverse effects
of their outlining should be examined (e.g., some
instructions like conditional branches cannot be
safely extracted from the function). Thus, unsafe
candidates are rejected as well as those candidates
that do not contribute to the decrease of the code
size. The formula for calculating the usefulness of
the outlining process is given in [6];

3.	 Function sharing – After the list of candidates is
finalized, code transformation takes place. The
new functions are created, and each candidate is
replaced with the corresponding calls.

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Data Science and
Applications Session

235

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

3.	 IMPLEMENTATION

Although the LLVM infrastructure supports the
outlining optimization, its implementation is not com-
plete enough as far as the debugging information is con-
cerned. As for the debugging data, LLVM treats the new
functions generated in case of outlining the same way as
any other compiler-generated code. This shortcoming
motivated us to propose a solution within the LLVM
that makes a distinction between outlined code and other
compiler-generated code [7]. This solution required
some modifications on three levels of abstraction: IR and
MIR code, DWARF format, and LLDB debugger. This
proposal covers a wide range of the LLVM debug infor-
mation that is useful for both the user and programmer
to see whether the outlining is applied somewhere in
the code. Support for these three levels is presented in
the following text. The entire implementation is publicly
available [8].

3.1. THE IR AND MIR CODE LEVELS

IR (intermediate representation) code used in LLVM
is generated by the front-end and the middle-end (i.e.,
the optimizer) of the compiler [9]. Its advantages are
the architectural independence and separation between
the compiler front-end and back-end, which enables the
different implementations of these two parts to connect
and work together. This kind of intermediate code is
very suitable for optimizations. MIR (machine-specific

intermediate representation) is also a type of intermediate
code that is used in LLVM in the compiler back-end.
It is generated after the instruction selection phase of
the compilation. MIR code is also very convenient for
target architecture-aware optimizations that are per-
formed in the back-end. When debugging information
is enabled, IR code keeps it in the form of the LLVM
metadata. Since MIR is an extension of IR and each MIR
module contains a corresponding IR module, MIR refers
to the same metadata with debug information from
the contained IR module. All metadata in the LLVM in-
frastructure represents class objects derived from the
llvm::Metadata base class [10].

Outlining optimization in the LLVM infrastructure
is implemented on both IR and MIR levels at the
module level in their runOnModule functions. Besides
the generation of an outlined function, its corresponding
metadata node DISubprogram is also created by calling
createFunction of the DIBuilder class. For this node,
there is the DINode::DIFlags::FlagArtificial flag that is
set to indicate that the function is artificially created by
the compiler. Listing 1 shows a part of the IR file for the
sample program after outlining two functions outlined_
ir_func_0 and outlined_ir_func_1. The DISubprogram
metadata nodes for them contain DIFlagArtificial indi-
cator which informs that these functions are artificially
generated by the compiler. However, it is not clear that
they are outlined.

; Function Attrs: nounwind uwtable
define dso_local i32 @main() #0 !dbg !7 {
entry:
 %x = alloca i32, align 4
 %y = alloca i32, align 4
 call void @outlined_ir_func_1(i32* %x), !dbg !14
 call void @outlined_ir_func_1(i32* %y), !dbg !14
 call void @outlined_ir_func_0(i32* %x, i32* %y), !dbg !14
 call void @outlined_ir_func_0(i32* %y, i32* %x), !dbg !14
 ret i32 0
}

!15 = distinct !DISubprogram(name: "outlined_ir_func_0", linkageName: "outlined_ir_func_0",
scope: !1, file: !1, type: !16, flags: DIFlagArtificial, spFlags: DISPFlagDefinition |
DISPFlagOptimized, unit: !0, retainedNodes: !17)
!16 = !DISubroutineType(types: !17)
!17 = !{}
!18 = !DILocation(line: 0, scope: !15)
!19 = distinct !DISubprogram(name: "outlined_ir_func_1", linkageName: "outlined_ir_func_1",
scope: !1, file: !1, type: !16, flags: DIFlagArtificial, spFlags: DISPFlagDefinition |
DISPFlagOptimized, unit: !0, retainedNodes: !17)

Listing 1. A part of the resulting IR file after the outlining is applied to a sample program [7]

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Data Science and
Applications Session

236

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

The solution to this problem is found in the addi-
tion of a new flag named Outlined in the DIFlags enum
statement. This enum statement contains all flags for
some metadata and it is a part of the DINode class also
inherited by the DISubprogram class. The role of the new
flag is to reflect the information that the corresponding
DISubprogram is an outlined function. Like all other
flags, the Outlined flag is declared in llvm/include/llvm/
IR/DebugInfoFlags.def file, whose content is included in
the enum statement. The flag was then added by creating
an appropriate call of the HANDLE_DI_FLAG macro,
which has previously been defined in the DIFlags enum
statement. After that, the definition of the Largest flag
was also updated accordingly. These code modifications
are shown in Figure 1.

After adding the new flag, its use on both IR and MIR
levels was implemented. When an outlined function and
its corresponding DISubprogram object are created, in-
stead of a more general DINode::DIFlags::FlagArtificial
indicator which tells that the function does not exist in
the source code, the new DINode::DIFlags::FlagOutlined
flag is set. It provides more precise information about
the nature of the compiler-generated function, as illus-
trated in Figure 2. Modification on the MIR level was
performed in a quite similar manner.

Now, after the outlining is applied, debugging infor-
mation in the previous example is shown in Listing 2.

3.2. DWARF FORMAT LEVEL

The DWARF format is one of the most frequently
used formats for debugging information [11]. Accord-
ing to DWARF, debug information is represented as a
tree-like structure. Hence, it consists of the DIE nodes
connected by basic parent-children relationships. The
characteristics of program entities represented by the
DIE objects are described by a versatile set of attributes
of different types (can even be a reference to some other
DIE node).

One of the DIE objects is also the DW_TAG_subpro-
gram object which represents the function. Among other
attributes, it contains the DW_AT_artificial attribute
whose purpose is to denote the compiler-generated
construct that does not exist in the source code. Again,
this information is not precise enough in the case of out-
lined functions. Therefore, the outlined code needs to
be distinguished from some other artificially generated
code.

Figure 1. Introducing the new Outlined flag [8]

Figure 2. Using the Outlined flag on the IR level [8]

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Data Science and
Applications Session

237

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Translation of a program in LLVM acts as a pipeline.
It enables the propagation of information generated in
an earlier phase of compilation to the later stages. This
property was exploited in augmenting the debugging
information regarding outlining optimization in the
DWARF format.

Since the new, Outlined indicator is added on the
IR level, it is propagated through the compiler up to the
place where the support for building the debugging infor-
mation in DWARF format is implemented as an indica-
tion that some function is outlined. It is achieved by in-
troducing the isOutlined function in the DISubprogram
class which checks whether the Outlined indicator for a
given object is set. If the call of the isOutlined function

returns a true value, the attribute DW_AT_LLVM_out-
lined is added to the corresponding DIE object repre-
senting the outlined function. This attribute is intro-
duced in the DWARF format by adding another call of
the HANDLE_DW_AT macro with the LLVM_outlined
argument. It was done in the part reserved for the exten-
sion of the format for the LLVM project needs, in the file
llvm/include/llvm/BinaryFormat/Dwarf.def file as shown
in Figure 3.

The addition of this attribute in the DIE object re-
lated to the DISubprogram metadata is shown in Figure
4. Listing 3 shows the contents of the DW_TAG_subpro-
gram objects of the two outlined functions from Listing
1 after the proposed modifications are implemented.

!15 = distinct !DISubprogram(name: "outlined_ir_func_0", linkageName: "outlined_ir_func_0",
scope: !1, file: !1, type: !16, flags: DIFlagOutlined, spFlags: DISPFlagDefinition |
DISPFlagOptimized, unit: !0, retainedNodes: !17)
!16 = !DISubroutineType(types: !17)
!17 = !{}
!18 = !DILocation(line: 0, scope: !15)
!19 = distinct !DISubprogram(name: "outlined_ir_func_1", linkageName: "outlined_ir_func_1",
scope: !1, file: !1, type: !16, flags: DIFlagOutlined, spFlags: DISPFlagDefinition |
DISPFlagOptimized, unit: !0, retainedNodes: !17)

Listing 2. DISubprogram metadata of the outlined functions from Listing 1 after Outlined flag is introduced [7]

Figure 3. Declaration of the DW_AT_LLVM_outlined DWARF attribute [8]

Figure 4. Adding the DW_AT_LLVM_outlined attribute to the DIE object of the function [8]

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Data Science and
Applications Session

238

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

3.3. LLDB DEBUGGER LEVEL

LLDB debugger is also developed as a part of the
LLVM project [12]. Like every other debugging tool, it
accepts executable code as input and then executes it
using the debugging information, with the provided
parameters. During the debugging process, in some situ-
ations, LLDB prints messages to the user that help him
understand the program being executed, as well as the
modifications of the program resulting from applied opti-
mizations. Enhancing this information regarding outlin-
ing optimization in the LLDB debugger is the main goal
at this level.

The problem is quite like to the problems we have
faced on the IR/MIR and DWARF levels. If a function is
outlined, the LLDB tool recognizes it as artificially gen-
erated by the compiler, without any further explanation.
Namely, during the execution of an outlined function,
the LLDB debugger prints the following message „Note:
this address is compiler-generated code that has no source
code associated with it.“ This is a generic message which
is printed each time some compiler-generated code is
encountered. If the name of the function with the compiler-
generated code is known, it is also given in the previous
message as a parameter. Whether some code is compiler-
generated or not is checked by the GetStatus method of
the StackFrame class, which prints the description of the
stack frame and/or source (or assembly) code context
for this frame. This method examines whether there is a
source code line that corresponds to the current ad-
dress during debugging. If the line field of the line_entry
object of the LineEntry class that represents a field of
the m_sc object of the SymbolContext class is equal to
zero, it is an indication of an artificially generated code.

To solve the previous ambiguity, it is designed that
the LLDB debugger prints a new, custom message when
an outlined function is encountered. Unlike previous
messages about compiler-generated code that appear
only once, the new message is printed after each instruc-
tion of an outlined function is executed, provided that
step-by-step debugging mode is active.

Implementation of this LLDB debugger extension is
based on the Function class since it represents a con-
nection between the DWARF format and the LLDB as
far as the function debugging is concerned. It contains
information on whether the function represented by the
object of this class is outlined. For this purpose, a new
m_outlined field is added as well as the corresponding
parameter of the class constructor for the initialization
of the new field (the default value is false). Also, this class
is extended with the IsOutlined method that returns the
value of the m_outlined field.

Finally, it was necessary to implement the support
for setting the new field in the following way. By pars-
ing the die DWARFDIE object, the ParseFunctionFrom-
DWARF method of the DWARFASTParserClang class
creates the object of the Function class and returns the
pointer to it. This die must have the DW_TAG_sub-
program tag, so that it represents a function. During
the parsing of the object, a for loop that traverses all
DWARF attributes of the object is added and, if the new
DW_AT_LLVM_outlined attribute is found, it keeps the
record that the function is outlined by setting a local
variable to true. This variable is later forwarded to the
Function class constructor as a parameter that initializes
the m_outlined field.

Ox0000005b: DW_TAG_subprogram
 DW_AT_low_pc (0x000000000000004e)
 DW_AT_high_pc (0x0000000000000052)
 DW_AT_frame_base (DW_OP_reg7 RSP)
 DW_AT_linkage_name ("outlined_ir_func_1")
 DW_AT_name ("outlined_ir_func_1")
 DW_AT_LLVM_outlined (true)
 DW_AT_external (true)

Ox00000065: DW_TAG_subprogram
 DW_AT_low_pc (0x000000000000003c)
 DW_AT_high_pc (0x000000000000004e)
 DW_AT_frame_base (DW_OP_reg7 RSP)
 DW_AT_linkage_name ("outlined_ir_func_0")
 DW_AT_name ("outlined_ir_func_0")
 DW_AT_LLVM_outlined (true)
 DW_AT_external (true)

Listing 3. New display of the DW_TAG_subprogram objects for two outlined functions [7]

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Data Science and
Applications Session

239

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

In this way, the information of the applied outlining
optimization is propagated from the DWARF format to
the LLDB tool. Previous implementation details are pre-
sented in Figure 5.

After the object of the Function class is created, it can
be used to detect whether some function is outlined or
not. This possibility is exploited in the GetStatus method
of the StackFrame class. Besides reporting two previous
messages about the existence of the artificially gener-
ated code, the new message „Note: this function is out-
lined.“ is displayed in case the IsOutlined method for
the current function returns value true. This change is
illustrated in Listing 4.

4.	 CONCLUSION

The debugging process is crucial for software testing
and its efficiency essentially depends on the complete-
ness and the precision of the debugging information.
In the LLVM project, debug data cannot recognize the
situation when a function is compiler-generated by out-
lining. This paper proposes a solution to this problem
by enhancing the debugging information and its appro-
priate handling. The proposal is carefully implemented
on the three levels of abstraction: the IR and MIR code,
DWARF format, and LLDB debugger. Thorough regres-
sion testing was carried out to verify the correctness of
the solution. It required enhancing the existing tests and
writing new ones.

Figure 5. Propagation of information about outlining from DWARF to LLDB [8]

if (m_sc.function && m_sc.function->IsOutlined()) {
 strm.Printf("Note: this function is outlined.");
 strm.E0L();
}

Listing 4. The new message for an outlined function in the GetStatus method of the StackFrame class [7]

http://sinteza.singidunum.ac.rs

Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Data Science and
Applications Session

240

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

The implementation of the support for enhancing
the debugging information in the context of the outlin-
ing optimization does not require the writing of a large
amount of code, as can be seen from the proposed solu-
tion. Instead, it required a very demanding analysis of
a complex project like LLVM and inserting many small
changes at different places in the code to encompass
all levels of abstraction in the LLVM project followed
by exhaustive testing. Hence, the main part of the task
is of the research type, while the implementation is a
less demanding part. It is a typical pattern in the LLVM
infrastructure when the modification or addition of a
relatively small amount of code can provide a significant
effect. There is also an idea for further improvement of
user experience during debugging in LLDB. It can be
achieved by providing support for the reconstruction of
local variables in the outlined functions.

REFERENCES

[1] 	 M. L. Scott, Programming Language Pragmatics,
Morgan Kauffman, 2006.

[2] 	 “The LLVM Compiler Infrastructure,” [Online].
Available: https://llvm.org/. [Accessed 27 March
2025].

[3] 	 P. Zhao and J. N. Amaral, “Function Outlining,”
Dept. of Computing Sciences, Univ. of Alberta,
Edmonton, Canada, 2010.

[4] 	 M. Vukasović and A. Prokopec, “Exploiting
Partially Context-sensitive Profiles to Improve
Performance of Hot Code,” ACM Transactions on
Programming Languages and Systems, vol. 45, no. 4,
pp. 1-64, 2023.

[5] 	 C. Liao, D. J. Quinlan, R. Vuduc and T. Panas, “Ef-
fective Source-to-Source Outlining to Support Whole
Program Empirical Optimization,” in International
Workshop on Languages and Compilers for Parallel
Computing, Newark, DE, United States, 2009.

[6] 	 “Reducing code size with LLVM Machine Outliner
on 32-bit Arm targets,” [Online]. Available: https://
www.linaro.org/blog/reducing-code-size-with-
llvm-machine-outliner-on-32-bit-arm-targets/.
[Accessed 30 August 2022].

[7] 	 V. M. Tomašević, “Unapređenje infrastrukture
LLVM dodavanjem informacija za otklanjanje
grešaka prilikom autlajning optimizacije,” School of
Electrical Engineering, University of Belgrade, 2022.

[8] 	 “[Outliner] Add debug-info support in IR, DWARF
and LLDB,” [Online]. Available: https://github.
com/llvm/llvm-project/commit/80e1c808dd121595
f7124917dd7ef22bb0da5fa7?diff=unified. [Accessed
25 March 2025].

[9] 	 “Opt – LLVM optimizer,” [Online]. Available: htt-
ps://llvm.org/docs/CommandGuide/opt.html. [Ac-
cessed 20 March 2025].

[10] 	 “llvm::Metadata Class Reference,” [Online]. Available:
https://llvm.org/doxygen/classllvm_1_1Metadata.
html. [Accessed 20 March 2025].

[11] 	 “DWARF Debugging Information Format Version
5,” [Online]. Available: https://dwarfstd.org/doc/
DWARF5.pdf. [Accessed 17 March 2025].

[12] 	 “The LLDB Debugger,” [Online]. Available: https://
lldb.llvm.org/. [Accessed 23 March 2025].

http://sinteza.singidunum.ac.rs

