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FORECASTING BASE METALS PRICES: A COMPARISON OF 
VARIOUS BAYESIAN-BASED METHODS

Abstract: 
This paper addresses the topic of forecasting base metal prices index using 
advanced Bayesian methods, emphasising Bayesian dynamic mixture models. 
Original schemes were expanded by certain modifications. A broad set of 
macroeconomic indicators, such as interest rates, industrial production, 
economic activity, market stress indices, others commodities prices, exchange 
rates and information from stock markets, etc. were taken as potential 
predictors. Models were recursively estimated, taking under consideration 
possible discrepancy between released and revised data, carefully simulating 
real-time forecasting conditions. Dynamic Model Averaging was found 
to provide the highest accuracy of predictions compared to competing 
models. The forecasts were significantly more accurate than the ARIMA 
method or the no-change method. Among the dynamic mixture variants, 
model selection appeared to offer the best performance. The Clark-West 
test for nested models confirmed that forecast combination schemes lead 
to significant forecast accuracy improvements. Sector companies’ stock 
prices and particular exchange rates were found to be the important base 
metals price predictors. 

Keywords: 
Bayesian Dynamic Mixture Models, Dynamic Model Averaging, Forecasting 
Accuracy, Model Averaging, Model Selection.

INTRODUCTION

Forecasting metal prices has become an important area of focus in 
economic research. Over time, there has been a shift from traditional 
econometric methods to more advanced techniques that promise greater 
prediction accuracy. Precise forecasting of metal prices is vital for various 
stakeholders, such as policymakers, investors, and industries that rely on 
raw materials. Metal prices are affected by numerous factors, including 
supply and demand fluctuations, geopolitical developments, and financial 
market conditions, which makes predicting them a complex task. 
Recently, the adoption of advanced methods, especially machine learning 
models, has gained traction in the field of metal price forecasting [1-5]. 
The aim of this research is to provide an insight into this topic from 
Bayesian dynamic mixture models (BDMM) applied to forecasting the 
monthly World Bank index of metal prices [6]. Contrary to traditional 
models often failing to account for non-linear relationships and structural 
breaks caused by unpredictable events, such as the COVID-19 pandemic 
or geopolitical tensions, BDMM offers a promising technique [7-8]. 
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2. DATA

Monthly data between 09/2002 and 10/2024 were 
analysed. World Bank Base Metals Price Index (2010 = 
100, USD), including aluminium, copper, lead, nickel, 
tin and zinc was taken as the dependent variable. Simi-
larly, as in previous studies [1-5], and, for example, 
Buncic and Moretto [9] the following variables were 
taken as independent ones: Consumer Price Index for 
All Urban Consumers: All Items in U.S. City Average 
(CPIAUCSL); U.S. 3-month risk-free rate (monthly 
averages, 3-month treasury bill: secondary market 
rate, TB3MS), a proxy of short-term interest rate; U.S. 
10-year government bond yields (monthly averages, 
IRLTLT01USM156N), a proxy of long term interest 
rate; U.S industrial production (INDPRO); Kilian Index 
of Global Real Economic Activity (IGREA); term spread 
(10-Year Treasury Constant Maturity Minus 2-Year 
Treasury Constant Maturity for U.S.; monthly aver-
ages, T10Y2YM); St. Louis Fed Financial Stress Index 
(monthly averages, STLFSI4); implied volatility VIX in-
dex (monthly averages); The Caldara and Iacoviello GPR 
index; S&P 500 index (^SPX); Dow Jones Industrial in-
dex (^DJI); Shanghai Composite Index (^SHC); MSCI 
EM index for emerging markets; monthly average prices 
of gold (USD per troy ounce); monthly average WTI oil 
price (USD per barrel). Additionally, exchange rates (to 
USD) of the largest producers of aluminium, lead, nickel 
and zinc (both primary metal and ore) were taken, i.e., 
China (USDCNY), Russia (USDRUB), India (USDINR), 
Indonesia (CCUSSP02IDM650N and since 01/2024 US-
DIDR), South Korea (USDKRW), Australia (AUDUSD), 
Guinea (monthly averages, GNF) and Philippines (US-
DPHP). Also, largest metal companies share prices were 
taken, i.e., Rio Tinto Plc (RIO.UK, in GBX), Alcoa Corp 
(AA.US, in USD), Hindustan Zinc Limited (HINDZINC.
BO, in INR), Teck Resources Limited (TECK, in USD), 
BHP Group Limited (BHP, in USD), and Sherritt Inter-
national Corporation (S.TO, in CAD) [6, 10-22].  

If not otherwise stated, the last observations in a 
period were taken. All variables, except interest rates, 
Kilian index, term spread, financial stress index, VIX 
and GPR were included in log-differences. For computa-
tional reasons, and stationarity issues, the variables were 
later standardized based on a mean and standard devia-
tion of the first 100 observations (Table 1 and Table 2). 
This value was kept further as the in-sample. However, 
obtained forecasts were transformed back to the level 
values, and then evaluated. To mimic real-market data 
availability, all independent variables were lagged one 
period back, and the Kilian index was lagged two periods 
back. Initially, the data as released in the past were taken, 
i.e., not in a revised form [23]. 

3. METHODS

All models were estimated recursively, i.e., each fore-
cast at time t was done over all the data available up 
to time t-1. The following models were estimated: 
Bayesian dynamic mixture (BDMM) with state space 
(SS) and normal regression components (NR). The 
original schemes [7-8] were additionally improved 
by model averaging (A) and model selection schemes 
(H) [24]. They were denoted by BDMM-SS, BDMM-
SS-A, BDMM-SS-H, BDMM-NR and  BDMM-NR-H 
respectively.  Additionally, Dynamic Model Averaging 
(DMA) and Dynamic Model Selection (DMS) were 
estimated (with the standard forgetting factors equal to 
0.99). Bayesian Model Averaging (BMA) and Bayesian 
Model Selection (BMS) were also estimated [25]. These 
models were also estimated in versions with component 
models being just single variable ones (i.e., simple linear 
regression of one independent variable and a constant). 
They were denoted by DMA-1VAR, DMS-1VAR, BMA-
1VAR and BMS-1VAR, respectively [26]. 

LASSO, RIDGE and Elastic Net (EL-NET) regressions 
were estimated, both conventionally and in their Bayesian 
versions, i.e., B-LASSO and B-RIDGE. Following the 
recursive approach, the penalty parameter was chosen 
by the t-fold cross-validation based on the Mean Square 
Error (MSE) metric. Mixing parameters {0.1, 0.2, …, 
0.9} were employed. Additionally, the least-angle regres-
sion (LARS) was estimated [27-29]. 

Time-varying parameters regressions, both with 
forgetting (TVP-FOR) and without (TVP) were 
estimated [26]. ARIMA was estimated with automatic 
lag selection [30]. The no-change (NAÏVE) method, a 
historical average over all past observations (HA) and 
over rolling window of last 100 observations (HA-
ROLL) were also estimated. 

In addition, when suitable, variance updating was 
done as by Raftery et al. [25], and additionally the version 
with the exponentially weighted moving average was 
estimated with parameter κ = 0.97 as recommended, 
for example, in [31]. Such version of models was denoted 
by adding “-K”, i.e., BDMM-SS-K, BDMM-SS-A-K, 
BDMM-SS-H-K, DMA-K, DMS-K, DMA-1VAR-K, 
DMS-1VAR-K, BMA-K, BMS-K, BMA-1VAR-K, BMS-
1VAR-K,TVP-K and TVP-FOR-K. Secondly, BDMM-
NR-1MOD denotes the model BDMM-NR where the 
only component is the model with all considered inde-
pendent variables. In the case of BDMM-SS and BMA 
such a reduction results in the TVP model, and for 
DMA – in TVP-FOR model [26].  
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Table 1. Descriptive statistics

Min Max Mean Median Standard 
Deviation

Coefficient 
of Variation Skewness

p_metals -4.2048 2.1591 -0.1208 -0.1038 0.7820 -6.4713 -0.8220

cpi -4.8579 2.8450 0.0230 -0.0025 0.8613 37.4467 -0.6132

r_short -1.1416 1.9272 -0.2644 -0.6292 1.0223 -3.8662 0.9867

r_long -5.3409 1.7318 -1.5594 -1.7494 1.7734 -1.1372 -0.0638

ind_prod -8.0029 1.9768 0.0960 0.1892 0.7306 7.6086 -6.7462

ec_act -4.2736 2.0267 -1.1602 -1.2689 1.2785 -1.1019 0.3432

term_spread -2.3669 1.3546 -0.3392 -0.2884 0.9734 -2.8695 -0.0524

fin_stress -0.8724 4.8788 -0.2141 -0.4022 0.6875 -3.2116 3.7128

VIX -1.0883 4.0797 -0.1901 -0.3819 0.8051 -4.2355 2.3035

GPR -0.7115 5.7244 0.1868 0.0023 0.8288 4.4357 2.8961

SP500 -4.1981 2.5353 0.0614 0.1757 0.9446 15.3745 -0.7754

DJ_Ind -3.6352 2.9383 0.0453 0.1269 0.9665 21.3151 -0.5550

SSE -3.1314 2.5712 -0.0318 -0.0151 0.7847 -24.7042 -0.4833

MSCI -4.6947 1.9523 -0.1250 -0.1160 0.8331 -6.6672 -0.8312

p_gold -3.3274 2.3270 -0.1542 -0.2054 0.8840 -5.7330 -0.0410

p_oil -6.4683 5.7477 -0.0826 0.0619 1.1254 -13.6287 -0.9461

fx_CNY -3.1334 4.6269 0.1768 0.1050 1.2344 6.9823 0.5422

fx_RUB -5.4840 7.6815 0.1817 0.0160 1.7863 9.8299 0.8612

fx_INR -3.6819 4.1998 0.1285 0.0430 1.0303 8.0189 0.2759

fx_IDR -3.3691 5.1459 0.0662 0.0581 0.8740 13.2031 0.9473

fx_KRW -3.9837 3.3854 0.0337 -0.0188 0.8094 24.0421 0.1544

fx_AUD -4.4667 2.3168 -0.1323 -0.0929 0.8666 -6.5500 -0.5371

fx_GNF -6.3337 3.2157 -0.1344 -0.2190 0.6782 -5.0449 -2.0818

fx_PHP -2.2100 2.6953 0.1191 0.0638 0.9346 7.8471 0.2739

Rio_Tinto -5.0927 2.1439 -0.0625 -0.0789 0.8114 -12.9911 -1.0748

Alcoa -6.3662 3.4061 0.0121 0.0586 1.1152 92.1101 -1.1646

Hindustan_Zinc -2.4213 3.6508 -0.1208 -0.1596 0.7362 -6.0935 0.8719

Teck -5.5518 3.0392 -0.0918 -0.1007 0.8403 -9.1537 -0.9763

BHP -3.3694 2.5499 -0.1436 -0.1179 0.9520 -6.6297 -0.2834

Sherritt -5.4259 4.0323 -0.1377 -0.1582 1.1137 -8.0889 -0.4420
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Table 2. Stationarity tests. (For all tests 0.0100 indicates value less than 0.01. For Kwiatkowski-Phillips-Schmidt-Shin test 
0.1000 indicates value greater than 0.1.)

augmented 
Dickey-Fuller 
test statistic

augmented 
Dickey-Fuller 

test p-value

Phillips-
Perron test 

statistic

Phillips-
Perron test 

p-value

Kwiatkowski-
Phillips-

Schmidt-Shin 
test statistic

Kwiatkowski-
Phillips-

Schmidt-Shin 
test p-value

Skewness

p_metals -6.2814 0.0100 -173.3586 0.0100 0.1324 0.1000 -0.8220

Cpi -4.8201 0.0100 -133.1739 0.0100 0.3016 0.1000 -0.6132

r_short -2.6648 0.2959 -2.8191 0.9420 0.5390 0.0329 0.9867

r_long -1.0857 0.9234 -6.2037 0.7623 1.8374 0.0100 -0.0638

ind_prod -7.1646 0.0100 -228.9841 0.0100 0.2105 0.1000 -6.7462

ec_act -2.8170 0.2318 -22.9402 0.0369 1.7232 0.0100 0.3432

term_spread -2.2485 0.4713 -6.6974 0.7346 1.4911 0.0100 -0.0524

fin_stress -3.3587 0.0618 -31.1382 0.0100 0.3217 0.1000 3.7128

VIX -3.4809 0.0450 -41.8297 0.0100 0.1830 0.1000 2.3035

GPR -7.0251 0.0100 -64.7243 0.0100 0.7558 0.0100 2.8961

SP500 -5.7640 0.0100 -257.3397 0.0100 0.1015 0.1000 -0.7754

DJ_Ind -5.6475 0.0100 -253.0829 0.0100 0.0644 0.1000 -0.5550

SSE -4.7156 0.0100 -271.5288 0.0100 0.0420 0.1000 -0.4833

MSCI -6.1156 0.0100 -245.3847 0.0100 0.2399 0.1000 -0.8312

p_gold -5.6370 0.0100 -221.1622 0.0100 0.2435 0.1000 -0.0410

p_oil -6.5283 0.0100 -168.1905 0.0100 0.0775 0.1000 -0.9461

fx_CNY -6.5491 0.0100 -254.2642 0.0100 0.3558 0.0962 0.5422

fx_RUB -6.6391 0.0100 -195.8817 0.0100 0.1502 0.1000 0.8612

fx_INR -5.5961 0.0100 -233.7721 0.0100 0.1668 0.1000 0.2759

fx_IDR -6.6932 0.0100 -238.7224 0.0100 0.0577 0.1000 0.9473

fx_KRW -6.3087 0.0100 -270.5470 0.0100 0.1184 0.1000 0.1544

fx_AUD -6.5947 0.0100 -258.6252 0.0100 0.2818 0.1000 -0.5371

fx_GNF -5.8932 0.0100 -137.3176 0.0100 0.3462 0.1000 -2.0818

fx_PHP -6.1184 0.0100 -248.4363 0.0100 0.2890 0.1000 0.2739

Rio_Tinto -6.7902 0.0100 -249.9814 0.0100 0.0558 0.1000 -1.0748

Alcoa -5.7666 0.0100 -279.7361 0.0100 0.0475 0.1000 -1.1646

Hindustan_Zinc -5.8495 0.0100 -230.7092 0.0100 0.3541 0.0970 0.8719

Teck -7.3485 0.0100 -236.2602 0.0100 0.0777 0.1000 -0.9763

BHP -6.3720 0.0100 -266.9019 0.0100 0.2585 0.1000 -0.2834

Sherritt -6.4427 0.0100 -240.5759 0.0100 0.1512 0.1000 -0.4420
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Herein, K=29 independent variables are considered. 
In case of BDMM schemes and DMA, DMS, BMA and 
BMS, all possible multilinear regression models (i.e., 2K, 
because the constant-only model is also included) are 
originally considered as component models. This leads 
to serious computational obstacles. Therefore, DMA-
1VAR, DMS-1VAR, BMA-1VAR and BMS-1VAR models 
were estimated, as they are based on K+1 models only 
(the model with constant only is included). The second 
approach to reduce the number of component models is 
as follows. The set of independent variables is split into 
interest rates, economic activity, market stress, stock 
markets, other commodities prices, exchange rates, and 
metal sector stock price factors, i.e.,

x1 = [cpi, r_short, r_long];
x2 = [ind_prod, ec_act];
x3 = [term_spread, fin_stress, VIX, GPR];
x4 = [SP500, DJ_Ind, SSE, MSCI];
x5 = [p_gold, p_oil]; 
x6 = [fx_CNY, fx_RUB, fx_INR, fx_IDR, fx_KRW, f 
          x_AUD, fx_GNF, fx_PHP]; and  
x7 = [Rio_Tinto, Alcoa, Hindustan_Zinc, Teck, BHP,  
         Sherritt]. 

Then, all possible multilinear regression models are 
constructed for each set of independent variables, i.e., 
for x1, x2, …, x7. Finally, the model with all independent 
variables is added. As a result, instead of 229, just 1 + 23 
+ 22 + 24 + 24 + 22 + 28 + 26 – 7 + 1 = 363 component 
models must be considered, which corresponds to less 
than 9 independent variables for the original scheme, 
and which is computationally feasible. Simultaneously, 
such a split and combinations are economically reasonable, 
as they keep forecast averaging idea of the modelling 
schemes, and emphasise different economic groups of 
factors possibly influencing metals prices. 

4. RESULTS 

Table 3 presents forecast accuracy metrics of the 
estimated models. Root Mean Square Error (RMSE), 
normalized RMSE (N-RMSE), Mean Absolute Error 
(MAE) and Mean Absolute Scaled Error (MASE) were 
computed [32]. According to all metrics, DMA-K is the 
most accurate method, followed by DMA. Despite the 
poor performance of BDMM models, several of these 
schemes outperform NAÏVE or ARIMA. Out of these 
schemes, BDMM-NR-H performs the best. If revised 
data is taken, outcomes are quite comparable [23]. 
Indeed, for the robustness of results, initially, the models 

were estimated with released data, mimicking real-time 
forecasting. However, versions with revised data (as of 
12/2024) were also estimated [10-11, 23].  

According to the Diebold-Mariano test [33] with 
10% significance level and squared error loss function, 
forecasts from DMA-K are significantly more accurate 
than those from NAÏVE and ARIMA, TVP, TVP-FOR, 
TVP-K and TVP-FOR-K, as well as, many other models, 
but not from BDMM-SS-A-K or BDMM-NR-H. On the 
other hand, BDMM-NR-H forecasts more accurately 
than NAÏVE, but not than ARIMA. It forecasts more 
accurately than BDMM-NR-1MOD, and more accurately 
than many other models, but not as much as DMA-K. If 
revised data is taken, outcomes are similar, but BDMM-
NR-H is found to be additionally more accurate than 
ARIMA. (Due to the limited space detailed outcomes are 
not presented herein.) Moreover, the Model Confidence 
Set test [34], at a 5% significance level, eliminated BD-
MM-SS, BDMM-SS-K, TVP, HA and HA-ROLL models. 

When forecasts from models with released data 
were compared with those based on revised data with 
the Diebold-Mariano test with a 5% significance level, 
both with squared error and absolute scaled error 
loss functions, different accuracy can be assumed for 
BDMM-SS, RIDGE and TVP. For EL-NET, B-LASSO, 
B-RIDGE and TVP-K different accuracy can be assumed 
only when absolute scaled error loss functions are applied. 

The Giacomini-Rossi fluctuation test over approxi-
mately 2.75-year periods, at a 5% significance level, does 
not indicate that BDMM-NR-H forecasting performance 
would perform worse than DMA-K [35]. 

The Clark-West test for nested models was performed 
[36]. Only in two cases, assuming 5% significance level, 
the larger model cannot be said to generate smaller errors 
than the restricted (simple) model. This provides some 
evidence that model combination schemes provide 
significant gains to increase forecast accuracy. Details 
are in Table 4. 

Finally, in case of variable selection, DMA-K 
ascribed the highest weights to share prices, whereas 
BDMM-NR-H also did so, but it ascribed even higher 
weights to exchange rate variables. 
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Table 3. Forecast accuracy metrics

RMSE N-RMSE MAE MASE

BDMM-SS 8.9581 0.0945 6.6615 2.1327

BDMM-SS-A 4.2094 0.0444 3.1482 1.0079

BDMM-SS-H 4.4507 0.0470 3.3030 1.0575

BDMM-SS-K 8.8260 0.0931 6.6613 2.1327

BDMM-SS-A-K 3.9377 0.0416 2.9582 0.9471

BDMM-SS-H-K 4.0204 0.0424 3.1099 0.9957

BDMM-NR 4.1208 0.0435 3.0920 0.9899

BDMM-NR-H 3.8553 0.0407 2.9276 0.9373

BDMM-NR-1MOD 4.2338 0.0447 3.1337 1.0033

DMA 3.7607 0.0397 2.8458 0.9111

DMS 3.8380 0.0405 2.9448 0.9428

DMA-1VAR 3.9542 0.0417 2.9751 0.9525

DMS-1VAR 4.0874 0.0431 3.0604 0.9798

BMA 3.8074 0.0402 2.9053 0.9301

BMS 3.9057 0.0412 3.0041 0.9618

BMA-1VAR 4.0663 0.0429 3.0733 0.9839

BMS-1VAR 4.0714 0.0430 3.0697 0.9828

DMA-K 3.7462 0.0395 2.8108 0.8999

DMS-K 3.8248 0.0404 2.8649 0.9172

DMA-1VAR-K 3.9090 0.0412 2.9452 0.9429

DMS-1VAR-K 3.8988 0.0411 2.9262 0.9369

BMA-K 3.8167 0.0403 2.8613 0.9161

BMS-K 3.8460 0.0406 2.8940 0.9265

BMA-1VAR-K 4.0183 0.0424 2.9975 0.9597

BMS-1VAR-K 4.0180 0.0424 2.9963 0.9593

LASSO 3.9114 0.0413 2.9295 0.9379

RIDGE 3.8333 0.0405 2.8919 0.9259

EL-NET 3.8448 0.0406 2.9002 0.9285

B-LASSO 3.8463 0.0406 2.8938 0.9265

B-RIDGE 3.9209 0.0414 2.9417 0.9418

LARS 3.9901 0.0421 3.0171 0.9659

TVP 5.2093 0.0550 3.9573 1.2670

TVP-FOR 4.2491 0.0448 3.2028 1.0254

TVP-K 4.1956 0.0443 3.0911 0.9896

TVP-FOR-K 4.2250 0.0446 3.1473 1.0076

ARIMA 4.0074 0.0423 3.0326 0.9709

NAIVE 4.1940 0.0443 3.1235 1.0000

HA 20.1314 0.2124 15.2861 4.8939

HA-ROLL 20.1629 0.2128 15.8311 5.0684
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5. CONCLUSIONS

Forecasting base metal prices index with various 
Bayesian-based methods, focusing on Bayesian dynamic 
mixture models was discussed, both in original versions 
and with further improvements. A comprehensive large 
set of economic indicators was applied, and models were 
estimated recursively, mimicking real-time forecasting 
conditions. Dynamic Model Averaging was found to be 
the most accurate forecasting scheme, whereas out of 
Bayesian dynamic mixture models, the scheme with nor-
mal regression components and selection was the most 
accurate. The proposed methods outperformed ARIMA 
or no-change forecast. For robustness, models based on 
released data were compared with those based on revised 
data. According to the applied statistical tests, there is a 
gain in forecast accuracy from applying more advanced 
model combination schemes over simple models.
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Table 4. The Clark-West test outcomes

larger null CW statistic CW p-value

BDMM-SS TVP 1.3743 0.0847

BDMM-SS-A TVP 5.4306 0.0000

BDMM-SS-H TVP 5.1591 0.0000

BDMM-SS-K TVP-K -1.1000 0.8643

BDMM-SS-A-K TVP-K 4.4544 0.0000

BDMM-SS-H-K TVP-K 3.8545 0.0001

BDMM-NR BDMM-NR-1MOD 4.5229 0.0000

BDMM-NR-H BDMM-NR-1MOD 4.6307 0.0000

DMA TVP-FOR 5.2999 0.0000

DMS TVP-FOR 5.2130 0.0000

BMA TVP 6.5274 0.0000

BMS TVP 6.5215 0.0000

DMA-K TVP-FOR-K 4.0591 0.0000

DMS-K TVP-FOR-K 3.7423 0.0001

BMA-K TVP-K 3.5581 0.0002

BMS-K TVP-K 3.4871 0.0002
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