
144

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE 

DOI: 10.15308/Sinteza-2025-144-149

APPLICATION PROTOTYPE FOR CENTRALIZED AND 
AUTOMATED NETWORK MANAGEMENT SYSTEM

Abstract: 
Modern network infrastructures require efficient monitoring and management 
solutions to ensure operational continuity, security, and scalability. This paper 
presents a microservice-based application prototype designed to centralize 
and automate network management, incorporating real-time monitoring, 
remote device activation through Wake-on-LAN (WOL), and automated 
notifications for network anomalies. The proposed system comprises three 
core components: a backend service, a frontend interface, and a lightweight 
client agent deployed on monitored networks. The backend, built using 
Express.js and TypeScript, facilitates communication between components, 
while the frontend, developed with Vue 3, provides a user-friendly interface 
for managing network nodes. The client agent utilizes Axios, NodeARP, and 
Ping to perform network diagnostics. This research evaluates the system’s 
architecture, deployment strategies, and performance implications, with a 
focus on optimizing disaster recovery time and reducing network downtime.

Keywords: 
Network Monitoring, Centralized Management, Microservices, Wake-on-LAN, 
Automated Alerts, Disaster Recovery.

INTRODUCTION

The increasing complexity of modern network environments neces-
sitates robust management solutions capable of real-time monitoring, 
remote accessibility, and automated control [1]. Traditional network 
management approaches rely on manual intervention and distributed 
tools, which can be inefficient in handling large-scale infrastructures [1]. 
The global shift toward remote and hybrid work, further catalyzed by the 
COVID-19 pandemic, has highlighted the need for centralized network 
management solutions that provide seamless oversight of connected 
devices, regardless of physical location [2].

A centralized network management system (CNMS) consolidates 
monitoring, control, and automation into a single platform, enabling 
IT administrators to oversee network health, track IP addresses, and 
automate device power management [3]. A key advantage of such a system is 
its ability to remotely manage server and workstation states using Wake-
on-LAN (WOL) technology [3] [4]. 

INFORMATION TECHNOLOGY SESSION

Petar Kresoja*,
[0009-0008-3343-1540] 
Marko Šarac,
[0000-0001-8241-2778]

Aleksa Vidaković,
[0009-0005-3527-011X]

Teodor Petrović,
[0009-0008-7186-2552]

Miloš Mravik
[0000-0001-5442-3998]

Singidunum University,  
Belgrade, Serbia

Correspondence: 
Petar Kresoja

e-mail: 
pkresoja@singidunum.ac.rs

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15308/Sinteza-2025-144-149
https://doi.org/10.15308/Sinteza-2025-144-149
https://orcid.org/0009-0008-3343-1540
https://orcid.org/0000-0001-8241-2778
https://orcid.org/0009-0005-3527-011X
https://orcid.org/0009-0008-7186-2552
https://orcid.org/0000-0001-5442-3998


145
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

This feature minimizes manual intervention by 
allowing administrators to power on critical systems 
remotely when required. Additionally, real-time network 
diagnostics and automated alerting mechanisms enhance 
response times to network anomalies, improving overall 
efficiency and security [1].

This paper introduces a microservice-based CNMS 
prototype, developed to address these challenges. The 
system consists of three primary components:

• Master Application (Backend): A centralized 
service handling API requests, user authentication, 
and database operations.

• Frontend Interface: A web-based application 
that allows administrators to monitor and control 
network nodes via a user-friendly UI.

• Edge Node Client: A lightweight TypeScript 
application installed on network nodes to conduct 
status checks, detect device availability via ICMP 
(ping), retrieve MAC addresses, and issue WOL 
commands [3].

By implementing a modular microservices architec-
ture, this system ensures scalability, fault tolerance, and 
interoperability with existing network infrastructures 
[2] [5]. The study explores the technical implementation, 
deployment strategies, and system performance, particu-
larly focusing on minimizing disaster recovery time and 
enhancing network resilience [6] [7].

2. RELATED WORKS

The development of centralized network management 
systems aligns with ongoing research in real-time moni-
toring and automated control of networked infrastruc-
tures. Paper [1] provides a comprehensive overview of 
current and emerging practices in network monitoring, 
emphasizing the transition from reactive to proactive 
systems capable of early anomaly detection. When it 
comes to modern industrial environments, in the 
paper [2] authors discuss the increasing relevance of 
centralized solutions within the framework of Industry 4.0, 
where the integration of IoT devices requires scalable 
and efficient management platforms.

In the paper [3], the authors outline general IoT 
architecture and protocol challenges, reinforcing the need 
for modular and lightweight systems such as the one pro-
posed in this paper. The use of Wake-on-LAN (WOL) for 
device activation is supported by foundational practices 
in network protection and control as described in [4]. 
The authors stress the role of automation in improving 
response time and reducing manual overhead.

Further, the implementation of microservices and 
fog computing principles is mentioned in the paper [5], 
where the authors highlight architectural advantages 
such as scalability and fault isolation, which are both 
essential for robust CNMS design. Finally, the system’s 
disaster recovery capabilities are supported by research 
into communication architectures for disaster scenarios 
[6] and machine learning-based anomaly detection for 
resilience [7], once again underlining the importance of 
automated alerting and node recovery mechanisms in 
modern network management.

3. METHODOLOGY

The CNMS follows a microservices architecture to 
enable modularity and independent scalability of system 
components. Each service operates autonomously while 
interacting through well-defined RESTful APIs, ensuring 
minimal dependencies and fault isolation.

3.1. SYSTEM ARCHITECTURE DESIGN

As shown in Table 1, the architecture consists of:
1. Backend Service: Developed in Express.js with 

TypeScript, this service acts as the system's 
central hub, processing API requests, managing 
authentication, and interfacing with the database.

2. Frontend Application: Built using Vue 3 (Com-
position API), the frontend provides a responsive 
dashboard for network administrators, displaying 
real-time device status and offering control 
functionalities.

3. Edge Node Client: A lightweight TypeScript-
based application utilizing Axios for API commu-
nication, NodeARP for MAC address retrieval, 
and Ping for online status checks.

The backend and frontend components are deployed 
within a containerized environment using Docker, 
ensuring portability and simplified orchestration. The 
edge node client operates as a standalone process on 
network devices, periodically sending status updates to 
the central server.

http://sinteza.singidunum.ac.rs


146
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

3.3. FUNCTIONAL FEATURES

The application has been developed with a compre-
hensive feature set, emphasizing a modular architecture 
that facilitates seamless integration of new functionalities. 
This design approach ensures scalability, maintainability, 
and adaptability, allowing for the efficient adoption of 
emerging technologies and future enhancements without 
requiring significant structural modifications.

3.3.1. Real-time Network Monitoring

The edge client operates as an autonomous monitoring 
agent, periodically dispatching ICMP ping requests to 
all registered devices within the network to assess their 
availability and operational status. Upon receiving a 
response, the client evaluates whether the device is 
online or offline and logs the results. These status 
updates are then transmitted to the master application, 
where they are systematically processed and stored. 
Administrators can access this real-time data through 
the frontend interface, enabling them to monitor net-
work node statuses, detect connectivity issues, and take 
appropriate actions when devices become unresponsive.

3.3.2. Wake-on-LAN (WOL) Automation

The system continuously monitors network devices 
and detects those that are offline. When an offline device 
is identified, it automatically generates and transmits 
Wake-on-LAN (WOL) packets to remotely initiate its 
power-up sequence. This functionality is particularly 
essential for servers and critical infrastructure compo-
nents that require scheduled startups or on-demand 
activation, ensuring seamless availability, reduced 
downtime, and improved operational efficiency in 
managed network environments.

3.3.3. MAC Address Resolution & IP Management

The edge client utilizes NodeARP to dynamically 
retrieve, and log MAC addresses associated with net-
work devices. This capability enables precise device iden-
tification, ensuring that each node is correctly mapped 
within the network. By maintaining an up-to-date 
record of MAC addresses, the system enhances network 
visibility, security, and management, allowing adminis-
trators to accurately track devices, detect unauthorized 
changes, and optimize network resource allocation.

3.3.4. Automated Alert System

Administrators are promptly alerted via email 
notifications whenever network anomalies are detected, 
ensuring real-time awareness of potential issues. These 
alerts are triggered by events such as unresponsive 
critical devices, unauthorized IP address changes, 
or unexpected connectivity failures. By providing 
immediate updates, the system enables administrators 
to take swift corrective actions, minimizing downtime, 
enhancing security, and maintaining the stability of the 
network infrastructure.

3.3.5. Disaster Recovery Optimization

The system is engineered to proactively reduce network 
downtime by implementing automated node recovery 
mechanisms that swiftly detect and respond to service 
disruptions. Upon identifying an outage, it triggers 
predefined recovery actions, such as attempting to 
restart unresponsive nodes or initiating Wake-on-LAN 
(WOL) commands for critical devices. This ensures the 
rapid reactivation of essential services, maintaining 
network continuity, operational efficiency, and minimal 
manual intervention in failure scenarios.

3.2. TECHNOLOGY STACK

Table 1. Technology Stack

Component Technology Used

Backend Express.js, TypeScript, REST API, Bun (v1.2.3)

Frontend Vue 3 (Composition API), TypeScript

Edge Client TypeScript, Axios, NodeARP, Ping

Database MySQL (hosted on the master server for low-latency queries)

Deployment Docker (Containerization), Systemd (for edge node service management)

http://sinteza.singidunum.ac.rs


147
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

3.4. ESTABLISHING CONNECTION

In the context of the Edge Node Client within the 
proposed Centralized and Automated Network Man-
agement System (CNMS), the establishment of a secure 
and efficient communication channel with the master 
application is a fundamental requirement. The connection 
is established through a RESTful API, utilizing HTTP 
requests to facilitate bidirectional data exchange between 
the edge nodes and the central server. 

The edge node employs Axios, a widely adopted 
HTTP client, to handle communication with the master 
application. Listing 1 shows the configuration used to 
instantiate the connection.

The code snippet shown in Listing 1 initializes an 
Axios HTTP client to establish a structured and secure 
communication channel between the edge node and 
the master application. It uses environment variables 
(process.env) to dynamically configure the base URL 
(NODE_API_BASE) and the API key (NODE_API_
KEY), ensuring adaptability across different deployments. 

A timeout of 60 seconds (60000 ms) is enforced to 
prevent indefinite waits in case of network failures or 
unresponsive servers, ensuring the system remains 
responsive and fault tolerant. For authentication and 
authorization, the edge node includes a custom header 
(X-Token) in each request, carrying a predefined API 
key (UUIDv7) issued by the master application. This 
API key serves as a persistent credential that uniquely 
identifies and authorizes the edge node. This ensures 
that only authorized nodes can interact with the master 
application, contributing to the overall security of the 
system.

4. BACKEND WORKFLOW

The backend service of the proposed system plays 
a central role in coordinating communication between 
the edge nodes, the database, and the frontend interface. 
It is responsible for validating node requests, delivering 
monitoring targets, processing incoming reports, and 
maintaining a consistent and real-time view of the network 
infrastructure.

4.1. NODE AUTHENTICATION AND ADDRESS 
PROVISIONING

Each edge node identifies itself using a unique API 
token provided during deployment. Upon receiving a 
request, the backend validates this token to ensure the 
node is authorized and linked to an existing network. If 
validated, the system updates the node’s metadata (IP 
address and last report time) and retrieves the set of IP 
addresses assigned for tracking under the corresponding 
network.

In cases where no addresses are yet defined, the 
backend triggers a generation routine based on the 
network’s configured IP range. This feature ensures that 
each network has a populated address space and allows 
the edge client to begin monitoring without manual 
preconfiguration, as shown in Listing 2.

4.2. REPORT PROCESSING AND STATE UPDATE

After executing a monitoring cycle, the edge node 
sends a bulk status report to the backend. The backend 
then performs a selective update on all affected address 
records:

• Updating the online status (alive) of each address
• Storing the resolved MAC address
• Recording the timestamp of the latest successful 

communication

This update process ensures that the monitoring data 
remains consistent, verifiable, and traceable to specific 
edge nodes. The system also updates the node’s metadata 
to reflect its active presence and reporting frequency, 
which is useful for tracking node reliability.

4.3. DATA EXPOSURE TO THE FRONTEND

All stored data is made accessible to the administra-
tive frontend via secure API endpoints. The frontend 
retrieves and visualizes:

• The current online/offline status of devices
• Historical reporting data
• Anomalies such as inconsistent MAC/IP pairs or 

inactive nodes

This enables administrators to gain actionable 
insight into the current network state and quickly identify 
areas requiring attention.

http://sinteza.singidunum.ac.rs


148
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

4.4. INTEGRATED ADDRESS MANAGEMENT

Beyond serving monitoring functions, the backend also 
acts as a lightweight IP address management (IPAM) 
solution. It maintains the lifecycle of each address object, 
tracks deletion states, and ensures no overlapping or 
unmanaged addresses are present. This functionality 
allows the system to act as both a monitoring platform 
and a live IP register, streamlining network oversight for 
small to medium-sized environments.

5. CONCLUSION

This paper presented the development of a centralized 
and automated network management system (CNMS) 
aimed at enhancing visibility, control, and resilience 
within distributed network environments. The system 
is built using a microservice architecture composed of 
an Express.js backend, a Vue 3 frontend, and a light-
weight TypeScript-based edge node client. Together, 
these components support real-time device monitoring, 
automated status reporting, Wake-on-LAN activation, 
and IP address management.

const client = axios.create({
    baseURL: process.env.NODE_API_BASE,
    timeout: 60000,
    headers: {
        'Accept': 'application/json',
        'X-Token': process.env.NODE_API_KEY
    }
})

Listing 1. Configuring the connection with the master application

Function GetNodeDataByToken(request):
    token = ExtractTokenFromRequest(request)
    // 1. Find node by token and ensure it's not deleted
    node = FindNodeInDatabase(
        where token == token AND
              deletedAt IS NULL AND
              node.network.deletedAt IS NULL
    )
    If node is not found:
        Throw "INVALID_NODE" error
    // 2. Update node metadata
    node.lastReportAt = CurrentTimestamp
    node.address = request.ip OR "localhost"
    SaveNodeToDatabase(node)
    // 3. Check if the network has any addresses
    addressCount = CountAddresses(
        where networkId == node.networkId
    )
    If addressCount == 0:
        network = GetNetworkById(node.networkId)
        GenerateAddressesForNetwork(node.networkId, network.range)
    // 4. Fetch and return all tracking-enabled addresses from the same network
    addresses = FindAddresses(
        where networkId == node.networkId AND
              deletedAt IS NULL AND
              address.network.deletedAt IS NULL AND
              tracking == true
        select addressId, value, mac, token, wol
    )
    Return addresses

Listing 2. Getting Node Data from Request Token

http://sinteza.singidunum.ac.rs


149
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

The system was evaluated in a controlled test envi-
ronment consisting of up to 500 simulated network 
nodes. Performance benchmarks showed that:

• The average API response time for edge node 
reporting was 18.4 milliseconds

• The system was able to process and store status 
updates from 500 nodes in under 3.2 seconds

• Wake-on-LAN commands had an observed 
success rate of 97.6% on properly configured 
client devices

• System memory usage remained stable during 
continuous operation, averaging 120 MB per 
edge node process over 24 hours

The backend workflow was designed for both efficiency 
and reliability, supporting dynamic address generation, 
token-based authentication, and bulk report handling 
via asynchronous database updates. The backend also 
serves as a lightweight IP address management (IPAM) 
layer, ensuring logical consistency and full visibility 
across the monitored network.

With its modular design and automated recovery 
capabilities, the CNMS prototype demonstrates the 
feasibility of combining lightweight agents with central-
ized intelligence to improve network operability. Future 
work may include integration of historical trend analysis, 
support for multi-network tenants, and predictive 
diagnostics using anomaly detection algorithms.

REFERENCES

[1]  S. Lee, K. Levanti and H. S. Kim, “Network moni-
toring: Present and future,” Computer Networks, 
vol. 65, pp. 84-98, 2014, doi: 10.1016/j.com-
net.2014.03.007

[2]  P. K. Malik, R. Sharma, R. Singh, A. Gehlot, S. C. 
Satapathy, W. S. Alnumay, D. Pelusi, U. Ghosh 
and J. Nayak, “Industrial Internet of Things and 
its Applications in Industry 4.0: State of The Art,” 
Computer Communications, vol. 166, pp. 125-139, 
2021, doi: 10.1016/j.comcom.2020.11.016

[3]  M. Lombardi, F. Pascale and D. Santaniello, “Inter-
net of Things: A General Overview between Archi-
tectures, Protocols and Applications,” Information, 
vol. 12, no. 2, p. 87, 2021, doi: 10.3390/info12020087

[4]  A. Jevremović, M. Veinović, M. Šarac and G. Šimić, 
Zaštita u računarskim mrežama, Beograd: Singi-
dunum University, 2018. 

[5]  T.-A. N. Abdali, R. Hassan, A. H. M. Aman and 
Q. N. Nguyen, “Fog Computing Advancement: 
Concept, Architecture, Applications, Advantages, 
and Open Issues,” IEEE Access, vol. 9, pp. 75961-
75980, 2021., doi: 10.1109/ACCESS.2021.3081770

[6]  K. Ali, H. X. Nguyen, Q.-T. Vien and P. Shah, “Dis-
aster management communication networks: Chal-
lenges and architecture design,” in IEEE International 
Conference on Pervasive Computing and Communi-
cation Workshops (PerCom Workshops), St. Louis, 
2015, doi: 10.1109/PERCOMW.2015.7134094

[7]  V. Linardos, M. Drakaki, P. Tzionas and Y. L. 
Karnavas, “Machine Learning in Disaster Man-
agement: Recent Developments in Methods and 
Applications,” Machine Learning and Knowledge 
Extraction, vol. 4, no. 2, pp. 446-473, 2022, doi: 
10.3390/make4020020

http://sinteza.singidunum.ac.rs



