
128

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

DOI: 10.15308/Sinteza-2025-128-135

ONTOLOGICAL MODELLING AND REASONING FOR THE
ABSTRACTHOME CLASS OF THE BAB FRAMEWORK FOR
PAIS SYSTEMS

Abstract:
Modern process-aware information systems (PAIS) demand a robust,
flexible, and semantically consistent approach to managing the ever-changing
business requirements––– of today's dynamic business environment. The
BAB (Business Application Builder) framework responds to these challenges
with an ontology-driven development methodology, which formalizes the
design, validation, and automatic code generation processes. This paper
presents a detailed analysis of the AbstractHome class, a central element
in the BAB ontology, with a focus on its ontological modelling. Acting as a
critical intermediary, the AbstractHome class serves as the backbone between
domain entities (AbstractEntity) and their corresponding data transfer
objects (AbstractDTO). It not only encapsulates the essential business logic
needed to drive complex processes but also streamlines the transition from
high-level design to executable code through automated generation. In our
approach, abstract constructs, implemented through abstract classes, generic
parameters, and well-defined interfaces, are rigorously formalized using
OWL standards. This formalization supports a comprehensive framework
that facilitates process simulation and validation before any code is gener-
ated. The ontological definitions enable developers to reason about business
processes at a high level of abstraction, ensuring that every constraint and
relationship within the AbstractHome class is explicitly captured.

Keywords:
Business Information Systems, PAIS, Ontological Modelling, Code Generation.

INTRODUCTION

1.1. RESEARCH MOTIVATION, HYPOTHESIS AND METHODOLOGY

Rapid changes in business processes, in a globalized and competitive
environment, require information systems to be both agile and reliable.
Process-aware information systems (PAIS) [1] enable dynamic work-
flows and rapid adaptation to new requirements. On the other hand,
traditional PAIS development and operation approaches are not suitable
for small teams with limited resources and often have trouble maintaining
consistency when manually implementing and/or automating the trans-
lation of abstract models into source code [2]. These issues are the main
motivation of the research shown in this paper.

INFORMATION TECHNOLOGY SESSION

Borivoj Bogdanović1*,
[0009-0008-2025-176X]

Vidan Marković1,
[0000-0002-5334-2237]
Đorđe Obradović1,
[0000-0003-1988-8874]

Milan Segedinac2,
[0000-0003-1743-9522]

Zora Konjović1
[0000-0001-9997-1285]

1Singidunum University,
 Belgrade, Serbia

2Faculty of Technical Sciences,
 University of Novi Sad,
 Novi Sad, Serbia

Correspondence:
Borivoj Bogdanović

e-mail:
borivoj.bogdanovic.22@singimail.rs

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15308/Sinteza-2025-128-135
https://doi.org/10.15308/Sinteza-2025-128-135
https://orcid.org/0009-0008-2025-176X
https://orcid.org/0000-0002-5334-2237
https://orcid.org/0000-0003-1988-8874
https://orcid.org/0000-0003-1743-9522
https://orcid.org/0000-0001-9997-1285

129
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Accordingly, the hypothesis of the research presented
in this paper is as follows.

Having an ontology-based conceptual model of a
business information system, it is possible to build a
(software) system that facilitates automated code
generation and rigorous formal consistency checking.

The research methodology of this paper is as follows:
• We base our research on the BAB ontology [2, 3]

which is a conceptual model of an information
system with generalized common business pro-
cesses, and the CodeOntology [4] which is an
ontology of object-oriented programming lan-
guages both implemented using standardized
Semantic Web technologies (RDF, OWL);

• For the automated code generation and consist-
ency checking, we use templates that are aware
of generalized common business processes im-
plemented in BAB ontology, the CodeOntology,
and ontological reasoning; and

• To validate the results, we use an example of
applying the BAB framework to create an ontology
of a simple business process and automatically
check the consistency of the resulting model.

For that purpose, we have developed the AbstractHome
class, which acts as a bridge between domain entities
(AbstractEntity class) and their corresponding data
transfer objects (AbstractDTO class) facilitating consist-
ency checking and automated code generation through
templates that are aware of generalized common business
processes implemented in BAB framework. This paper
provides a comprehensive study of the AbstractHome
class, its formal definition, structural constraints, and
its key role in the BAB system architecture.

The rest of the paper is structured as follows. Section
2 presents briefly related work. Section 3 introduces the
BAB ontology emphasizing the role of the AbstractHome
class. Section 4 describes the AbstractHome class and its
ontology modelling and explains the business process
modelling within BAB, while Section 5 brings the
discussion of the results and future research.

2. RELATED WORK

Ontologies are traditionally used in the development
and operation of information systems and can be classi-
fied into two groups [5]: (1) ontologies for information
systems that represent knowledge about the domain of
an information system, and (2) ontologies of information
systems that represent knowledge about the domain

of information system design and implementation.
The first group dominates, so the number of publica-
tions is extremely large. We will mention here only a
few sources just to illustrate the range of application
domains: production [6], health care [7], education [8],
e-Government and administration [9], agriculture [10],
environmental protection [11], culture and arts [12].
Publications from the second group deal with the onto-
logical modelling of the information system fundamen-
tals [13, 14], software engineering [15] and software life
cycle phases: requirement specification [16], design [17,
18], programming [19, 20, 21, 22, 23], testing [24],
deployment and operation [25].

Due to limited space, we will shortly present only the
sources [20, 23] that most directly influenced the devel-
opment of the BAB framework. Both sources deal with
the same research subject as the research whose part is
presented in this paper. The main difference between
these studies and BAB is that the BAB framework
already contains a highly abstract ontological model of
a business information system that is further adapted to
the needs of the specific user, which is not the case in any
of these studies. Source [20] defines five ontologies for
generating Java code using tools from the Semantic Web
stack. It has a significant similarity with the BAB frame-
work (the use of ontology to represent the information
system and the technology stack used). It differs from
the BAB framework in the level of abstraction of the in-
formation system and in that it does not provide explicit
support for other programming languages or deal with
checking the consistency of the generated code. While
BAB is focused on the code generation of business infor-
mation systems, work [23] deals with the incorporation
of the ontological paradigm into general-purpose pro-
gramming languages with the aim of providing support
for semantically rich domain-driven programming. As
such, it also provides support for the business domain
and various programming languages. In addition to the
absence of a highly abstract ontological model of the
business information system, the difference in relation
to the BAB framework is also in the approach to the
target language. Unlike the BAB framework, which in-
tegrates knowledge of the target programming language
into the BAB ontology and enables automatic code gen-
eration in the target language, research [24] internalizes
the ontological paradigm into the Clojure programming
language, thus enabling ontological programming on
two basic technological platforms, Java and .NET.

http://sinteza.singidunum.ac.rs

130
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

3. THE BAB FRAMEWORK AND THE ROLE OF
THE ABSTRACTHOME CLASS
The BAB framework [2, 3] is aimed to facilitate the

accelerated development and continuous delivery of
information systems, with a special emphasis on the
needs of smaller companies. The ontological approach
was chosen to easily represent and record both static
(structural) and dynamic (behavioural) aspects of the
system.

3.1. BAB ONTOLOGY

The BAB ontology is conceived as a foundation
framework for systematic representation of information
systems that facilitates the seamless generation of pro-
gramming code for web applications. It serves not only
as a conceptual blueprint for defining and organizing
parts of information systems, but also as a bridge to au-
tomated code generation with the capability to validate
design in modelling phase. This is achieved by aligning
it closely with the principles and structure provided by
CodeOntology project (WoC) used as a base for BAB
ontology.

A closer look at the composition of the classes reveals
that they are defined as subclasses of owl:intersectionOf
of collection of owl:Restriction based on properties like
woc:hasModifier, woc:hasPackage, woc:implements,
and woc:hasFormalTypeParameter if they are generic
classes. Properties are listed in the same way, intersec-
tion of restrictions. Individual fields follow the same
organization as classes. Following the same principle
enables the use of the same queries to get the internal
structure of the inspected construct.

The ontology is composed of several key compo-
nents. AbstractEntity, AbstractDTO, and AbstractHome
are the classes that represent the basis of an information
system, atomic entities that are used in business pro-
cesses. AbstractEntity represents the base for all subjects
and is later mapped to database tables and entities in
Object-Relational Mapping (ORM). AbstractDTO is a
principal concept for all different “looks” that we can
have at our data. It is used to define DTOs (Domain
Transfer Objects) and build SQL queries for populat-
ing views. The class AbstractHome connects data from
the classes AbstractEntity and AbstractDTO by enabling
the transformation from entity to DTO and encapsu-
lates business logic. All these classes can be extended
by adding interface classes. There are also classes that
represent a formal description of web application com-
mon elements, the abstractions of entity properties

(including their type, name, and access modifier), and
the restrictions on those properties (such as NotNull,
NotEmpty). Object properties model intra-class rela-
tions, while inter-class relations are classes, modelling
common four types of relationships (one-to-one, one-
to-many, many-to-one and many-to-many). Finally,
there is a special class Task which is used to model busi-
ness process. It is modelled as an RDF triplet commonly
annotated by duration. It can be combined with other
tasks to form a complex processes, knows which busi-
ness subject has privileges to start it, can require some
external data, resources (other system components),
and has status of completion. All classes are expressed
using corresponding structures in ontology, including
their type in programming language, information about
form of use and location in the package which absolves a
code generation tool of hard-coded information. All the
names are the same as in the BAB framework, and there
is a mapping one-to-one for all main concepts. This
enables code generators that mimic human reasoning
in writing code and the possibility to mix and match
automated and manual modes of code generation. RDF
and OWL standards make BAB highly interoperable and
flexible, capable for dynamic code generation with mini-
mal manual intervention. Side effects that we also get by
using those techniques are the up to date documentation
and information that can also be used for Artificial Intel-
ligence (AI) as the means of contextual help, validation,
or simulation.

4. THE ABSTRACTHOME CLASS AND ITS
ONTOLOGY MODELLING

AbstractHome class represents the central data
access point in the BAB ontology. As an abstract generic
class, it provides specialized entity transformations and
basic CRUD operations for entities in the system. It is
designed to work with all entity types derived from the
AbstractEntity class, allowing for code flexibility and
reusability.

4.1. ONTOLOGICAL MODELLING OF THE ABSTRACTHOME
CLASS

The AbstractHome class is modelled as an ontologi-
cal entity, specifically as owl:Class with type woc:Class.
In addition, it has modifiers represented by the
woc:hasModifier property, while the interface imple-
mentation is provided by the woc:implementsInterface
property. Furthermore, the class is associated with the
package rs.co.bora5.programs.bab.session, which is

http://sinteza.singidunum.ac.rs

131
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

clearly visible through the woc:hasPackage property.
This connection allows for organization and categoriza-
tion within the broader structure of the software system.
Regarding to generic parameters, types T and D are
modelled with the help of restrictions (owl:Restriction).
This uses properties such as woc:extends and
woc:hasTypeArgument, which explicitly set the condi-
tions and relations for these types. Methods within the
class are represented as individuals of type woc:Method,
and their parameters are modelled separately as individ-
uals of type woc:Parameter with appropriate properties,
which enables precise definition of class functionality.
Finally, woc:ParameterizedType is used to represent pa-
rameterized types. This approach clearly defines generic
types such as List<T>, Map< Key, Value >, Set<T>,
thereby providing additional flexibility and precision in
ontology modelling.

4.1.1. Core features of the AbstractHome class

The core features of a class include the key ele-
ments of a class that allow it to be accurately mod-
elled. In contrast to Java programming language which
uses strictly defined syntactic and semantic constructs,
such as generic parameters, interfaces, and access modi-
fiers, which are checked at a compile time, OWL al-
lows modelling those concepts as ontological entities,
properties, and restrictions that provide dynamic infer-
ence and more flexible interpretation of meaning. So,
in our framework generic parameters, interfaces and
modifiers are modelled as follows. We have two generic
parameters, T and D. In the ontology, T is defined as
owl:Class which is a subclass woc:TypeVariable, with
the constraint that it extends (woc:extends) Abstract-
Entity. This is represented by owl:Restriction. Simi-
larly, D is modelled as a variable type that extends
AbstractDTO<T>, using parameterized types in the on-
tology. The constraint is represented via the woc:extends

property with a value that is a parameterized type of
AbstractDTO<T>. The interfaces that AbstractHome
implements are modelled as classes in the ontology,
with the woc:implementsInterface property connecting
AbstractHome to the corresponding interfaces (e.g.,
AbstractHomeCRUDInterface<T>). Finally, the class is
marked as public or abstract, which is represented by
the woc:hasModifier properties in the ontology, with the
values woc:Public and woc:Abstract.

4.1.2. Methods

The methods within the AbstractHome class can be
divided into three main groups (CRUD operations, enti-
ty transformations and utility methods), each group in-
cluding specific operations and functionalities. The con-
tinuation of the section depicts the three main methods
groups (method definition and method description).

Table 1 shows methods that deal with basic opera-
tions on entities (creating, updating, deleting, and
retrieving). They directly manipulate the data in the
database, thus ensuring the integrity and consistency of
the system.

Table 2 shows data transformation methods that are
responsible for preparing and transforming data, gen-
erating SQL statements, as well as creating DTO objects
based on defined meta-data. They enable flexible formation
of queries and adaptation of results to the specific needs
of the application.

Utility methods (Table 3) are methods that facilitate
working with a session (synchronizing the state of an
entity, clearing the session) and provide additional infor-
mation about the class (getting metadata about the class).

Minimum details concerning the ontological model-
ling of methods are shown in Table 4 by three selected
methods, each representing the corresponding method
group.

Table 1. CRUD methods

Method definition Description

public T save(T entity) Saves or updates the given entity

public void remove(T entity) Deletes the given entity from the database

public void remove(Long id) Deletes an entity based on its id

public T find(Long id) Finds and returns an entity based on its id

public T getFullObject(Long id) Retrieves the complete entity with all associated data

public List<T> findAll() Returns a list of all entities of type T

http://sinteza.singidunum.ac.rs

132
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Table 2. Data transformation methods

public String getSelect() Generates a SQL SELECT statement with a DTO constructor call

public String getSelect(Map<String, AbstractEntity
> map) Generates a SQL JOIN expression for the related entities

public String getJoin() Generates a SQL JOIN expression for the related entities

public List<D> findAll(QueryMetaData<T, D>
queryMetaData) Returns a list of DTO objects based on the given query meta-data

public Stream<D> findAllLazy(int startIndex, int
count, QueryMetaData<T, D> queryMetaData) Returns a stream of DTO objects for lazy loading

public int findSizeLazy(QueryMetaData<T, D>
queryMetaData) Returns the total number of results based on the query

public List<D> findAllLazyDTO(int startIndex,
int count)

Returns a list of DTO objects for lazy loading without additional
meta-documentation

Table 3. Utility methods

Method definition Description

public void flush() Synchronizes the entity state with the database

public void clear() Clears the current session of tracked entities

public void refresh() Refreshes the entity state from the database

public String getName() Returns the name of the class with the package

public String getShortName() Returns the short name of the class

public Class<T> getEntityClass() Returns a reference to the entity class that AbstractHome manages

Table 4. Method representatives

Method definition Ontological modelling Access Parameter Return type

public T save
(T entity)

An individual of type
woc:Method associated
with the AbstractHome
class via the property
woc:isMethodOf

public; defined via
the woc:hasModifier
property

entity; modelled
as an individual of
type woc:Parameter,
with properties
woc:hasName
(value "entity") and
woc:hasType
indicating type T

generic T; modelled
by the property
woc:hasReturnType
that references the
type of the T variable

public String
getSelect()

An individual of type
woc:Method

public; defined via
the woc:hasModifier
property

entity; modelled
as an individual of
type woc:Parameter,
with properties
woc:hasName
(value "entity") and
woc:hasType indicating
type T

String; modelled
by the property
woc:hasReturnType
with a reference to
java.lang.String;

public void
refresh()

An individual of type
woc:Method, with-
out input parameters
and without return
type(void)

public; defined via
the woc:hasModifier
property

None None

http://sinteza.singidunum.ac.rs

133
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

4.2. MODELLING A BUSINESS PROCESS

Business processes are ontologically modelled as
the Task class. Here, we present an example of a simple
business process (Listing 1) that shows how the onSave
method, which executes the save and sendMailNotifica-
tion operations, is encapsulated as a Task.

The save method (persists a Shipment entity) and the
sendMailNotification method (sends an email notifica-
tion to a postman based on his ID) were defined in our
BAB ontology. Next, the onSave method was created to
execute these two methods in sequence. To capture the
entire business process, we modelled an individual on-
SaveTask—based on the Task class—that executes the
onSave method. This modelling approach leverages the
inheritance of methods from the AbstractHome class,
so any class extending AbstractHome (such as Shipm-
entHome) automatically has access to these operations.
The onSave method, defined to sequentially call save and
sendMailNotification, is treated as a composite opera-
tion, and its execution is represented by the onSaveTask
individual.

By representing onSaveTask as an instance of the
Task class, we can attach additional properties like dura-
tion, status, and sub-task relationships, thereby integrat-
ing it into a broader process management framework.
This approach enables the integration of method-level
functionality into coherent business process model, fa-
cilitating process validation, simulation, and eventual
automated code generation for distributed PAIS sys-
tems.

5. BAB APPLICATION TO PAIS SYSTEMS AND
AUTOMATIC VALIDATION

The ontological modelling of the AbstractHome fa-
cilitates the development of PAIS systems by ensuring
that every data access operation follows a consistent se-
mantic framework and enabling process simulation and
validation resulting in a model that can be used for au-
tomatic template-based code generation. By encapsulat-
ing CRUD operations and transformation logic within
the AbstractHome class, the ontology ensures that
every data access operation follows a consistent seman-
tic framework. For example, the restriction that each
entity passed to the save method must be an instance
of a class that inherits from AbstractEntity is enforced
through ontological restrictions on the generic param-
eter T. Before generating the code, the BAB tool uses
SPARQL queries to simulate the process flows defined
in the ontology. Such a simulation helps with the early
detection of inconsistencies (e.g. mismatched types or
missing methods) and ensures that all business require-
ments are met. Once the ontology model is validated,
it is used for automatic code generation (i.e. by Apache
FreeMarker templates). This process ensures that any
change to the ontology, such as updating restrictions on
the AbstractHome class, is automatically propagated to
the generated code, supporting agile development and
continuous integration.

In our approach, a series of SPARQL queries is executed
to validate the ontology, check constraints, and extract the
necessary parts for code generation. These queries serve as
the backbone for ensuring that the ontology is semantically
consistent before the code generation process begins. The
following example (Listing 2) illustrates the use of SPARQL
queries to extract specific layers from the ontology, such
as model classes, operator classes, session classes, DTO
classes, view classes, and window classes.

<owl:ObjectProperty rdf:about="http://www.semanticweb.org/borivoj.bogdanovic/ontologies/2023/9/
BAB#executesMethod"> <rdfs:domain rdf:resource="http://www.semanticweb.org/borivoj.bogdanovic/
ontologies/2023/9/BAB#Task"/> <rdfs:range rdf:resource="http://rdf.webofcode.org/woc/Method"/>
<rdfs:label>executes method</rdfs:label>
</owl:ObjectProperty>

<owl:NamedIndividual rdf:about="http://www.semanticweb.org/borivoj.bogdanovic/ontologies/2023/9/
BAB#onSaveTask">
<rdf:type rdf:resource="http://www.semanticweb.org/borivoj.bogdanovic/ontologies/2023/9/BAB#Task"/>
<rdfs:label>onSave Task</rdfs:label>
<bab:executesMethod rdf:resource="http://www.semanticweb.org/borivoj.bogdanovic/ontologies/2024/2/
BABTest#onSaveMethod"/> </owl:NamedIndividual>

Listing 1. Task ontology for business processes

http://sinteza.singidunum.ac.rs

134
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

The successful execution of such queries confirms
that each segment of the ontology meets its defined
constraints. The extracted information is then used to
generate code layer by layer, ensuring that the gener-
ated system mirrors the formal semantic structure. On
the other hand, if any query returns unexpected results,
the process flags these issues and halts code generation.
This immediate feedback allows developers to refine the
ontology and resolve inconsistencies before any errone-
ous code is produced.

6. CONCLUSION

As business requirements continue to change rap-
idly, the integration of ontological reasoning into devel-
opment frameworks looks like a promising path toward
building agile, reliable, and sustainable PAIS systems.
In BAB ontology, abstract constructs, implemented
through abstract classes, generic parameters, and well-
defined interfaces, are rigorously formalized using OWL
standards resulting in a comprehensive framework that
facilitates process simulation and validation before any
code is generated.

The AbstractHome class is a central element in the
BAB ontology. Acting as a critical intermediary, the Ab-
stractHome class serves as the backbone between do-
main entities (AbstractEntity) and their corresponding
data transfer objects (AbstractDTO). It encapsulates the
essential business logic needed to drive complex pro-
cesses and streamlines the transition from high-level de-
sign to executable code through automated generation.

That enable developers to reason about business pro-
cesses at a high level of abstraction, ensuring that every
constraint and relationship within the AbstractHome
class is explicitly captured.

Despite these advantages, there are serious chal-
lenges ahead. The complexity of ontology modelling as
well as the state-of-the-art integration of semantic tools
with traditional development environments reduces the
range of developers capable of using the BAB frame-
work. Therefore, a short-term goal of future research
is the development of more intuitive domain-specific
languages (DSLs) and graphical tools for easier ontol-
ogy management. Advances in AI provide the basis for
advanced predictive validation and defect detection, and
a medium-term research goal is to develop and integrate
these techniques into the BAB framework. Finally, the
development of LLMs opens up space for innovative
tools highly customized to a wide range of users, which
is the goal of long-term research in the BAB framework.

7. ACKNOWLEDGEMENTS

This research was partly funded by the Serbian
Ministry of Science, Technological Development and
Innovation through the Project no. 451-03-47/2023-
01/200156 “Innovative scientific and artistic research
from the FTS (activity) domain”.

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX woc: <http://rdf.webofcode.org/woc/>
PREFIX bab: <http://www.semanticweb.org/borivoj.bogdanovic/ontologies/2023/9/BAB#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?class
WHERE {
 ?class rdfs:subClassOf ?restriction .
 ?restriction owl:intersectionOf/rdf:rest*/rdf:first ?component .
 ?component owl:onProperty woc:extends ;
 owl:onClass bab:AbstractEntity ;
 owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger .
 { ?class rdf:type woc:Class . } UNION { ?class rdfs:subClassOf woc:Class . }
 FILTER (?class != owl:Nothing)
}

Listing 2. SPARQL query for extracting model classes

http://sinteza.singidunum.ac.rs

135
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

REFERENCES

[1] M. Dumas, W. van der AalstT and A. H. M. ter Hof-
stede, "Introduction," in Process-Aware Informa-
tion Systems Bridging People and Software Through
Process Technology, M. Dumas, W. van der Aalst
and A. H. ter Hofstede, Eds., Hoboken, John Wiley
& Sons, Inc., 2005, pp. 3-20.

[2] B. Bogdanović, Đ. Obradović, M. Segedinac and Z. K.
Konjović, “BAB Framework – Towards an Extensible
Software Platform for AI-Augmented Process Aware
Business Information Systems,” in Disruptive Infor-
mation Technologies for a Smart Society (ICIST 2024),
M. Trajanović, N. Filipović and M. Zdravković, Eds.,
Cham, Springer Cham, 2024, p. 197–212.

[3] B. Bogdanović, Đ. Obradović and Z. Konjović, “Bab
(Business Application Builder) Framework for Rapid
Development of Business Information Systems,” in
International Scientific Conference - Sinteza 2023,
Belgrade, 2023.

[4] M. Atzori, M. Atzeni and M. Setzu, “CodeOntol-
ogy,” [Online]. Available: http://codeontology.org/
about. [Accessed March 2024].

[5] F. Fonseca, “The double role of ontologies in infor-
mation science research,” Journal of the Association
for Information Science and Technology, vol. 58, no.
6, pp. 786-793, 2007.

[6] J. Abonyi, L. Nagy and T. Ruppert, Ontology-Based De-
velopment of Industry 4.0 and 5.0 Solutions for Smart
Manufacturing and Production - Knowledge Graph
and Semantic Based Modeling and Optimization of
Complex Systems, Cham, Swiss: Springer Cham, 2024.

[7] P. S. Sen and N. Mukherjee, “An ontology-based
approach to designing a NoSQL database for semi-
structured and unstructured health data,” Cluster
Computing, vol. 2027, p. 959–976, 2024.

[8] S. Bayne, “Digital education utopia,” Learning, Media
and Technology, vol. 49, no. 3, p. 506–521, 2023.

[9] C. Brys, I. Navas-Delgado and M. d. M. Roldán-
García, “LEGO: Linked electronic government
ontology,” Journal of Information Science, vol. 0,
no. 0, 2023.

[10] B. P. Bhuyan, R. Tomar, M. Gupta and A. Ramdane-
Cherif, “An Ontological Knowledge Representation
for Smart Agriculture,” in 2021 IEEE International
Conference on Big Data, Orlando, France, 2021.

[11] L. E. Chan, A. E. Thessen, W. D. Duncan, N. Matent-
zoglu, C. Schmitt, C. J. Gondin, N. Vasilevsky, J. A. Ms-
Murry, P. N. Robinson, C. J. Mungal and M. A. Haen-
del, “The Environmental Conditions, Treatments, and
Exposures Ontology (ECTO): connecting toxicology
and exposure to human health and beyond,” Journal
of Biomedical Semantics, vol. 14, p. 3(2023), 2023.

[12] M. Doerr, “Ontologies for Cultural Heritage,” in
Handbook on Ontologies, R. Studer and S. Staab,
Eds., Springer Berlin, Heidelberg, 2009.

[13] Y. Wnad and R. Weber, “An Ontological Model of an
Information System,” IEEE Transaction on Software
Engineering, vol. 16, no. 11, p. 1282/1292, 1998.

[14] Y. Wand and R. Weber, “An Ontological Analysis
of Some Fundamental Information Systems Con-
cepts,” in ICIS 1988 Proceedings. 35, 1988.

[15] I. Seiji , I. Bittencourt, E. F. Barbosa, D. Dermival
and R. Oscar Arajuo Paiva, “Ontology Driven Soft-
ware Engineering: A Review of Challenges and Op-
portunities,” IEEE Latin America Transactions, vol.
13, no. 3, pp. 863-869, 2015.

[16] M. P. S. Bhatia, A. Kumar, R. Beniwal and T. Malik,
“Ontology driven software development for auto-
matic detection and updation of software require-
ment specifications,” Journal of Discrete Math-
ematical Sciences and Cryptography, vol. 23, no. 1,
p. 197–208, 2020.

[17] S. K. Mishra and S. Anirban, “Service-oriented ar-
chitecture for Internet of Things: A semantic ap-
proach,” Journal of King Saud University - Com-
puter and Information Sciences, vol. 34, no. 10, pp.
8765-8776, 2022.

[18] I. Lutsyk and D. Fedasyuk, “Analysis of Approaches
to Design Ontological Models of an Adaptive Soft-
ware System,” Computer Systems and Information
Technologies, vol. 3, pp. 13-20, 2024.

[19] D. Strmečki, I. Mgdalenić and D. Radošević, “A sys-
tematic literature review on the application of on-
tologies in automatic programming,” International
journal of software engineering and knowledge engi-
neering, vol. 28, no. 05, pp. 559-591, 2018.

[20] D. Strmečki and I. Magdalenić, “An Ontological
Model for Generating Complete, Form-based, Busi-
ness Web Applications,” International Journal of Ad-
vanced Computer Science and Applications(IJACSA),
vol. 10, no. 8, p. 34 – 38, 2019.

[21] S. Barakt, A. B. Sánchez and S. Segura, “IDLGen:
Automated Code Generation for Inter-parameter
Dependencies in Web APIs,” in Service-Oriented
Computing. ICSOC 2023, F. Monti, S. Rinderle-Ma,
A. R. Cortés, Z. Zheng and M. Mecella, Eds., Cham,
Springer, Cham, 2023.

[22] K. Lano and Q. Xue, “Code Generation by Example
Using Symbolic Machine Learning,” SN Computer
Scienca, vol. 4, p. 170 (2023), 2023.

[23] D. Đurić and V. Devedžić, “Incorporating the Ontology
Paradigm into a Mainstream Programming Environ-
ment,” Informatica, vol. 23, no. 2, pp. 203 - 224, 2012.

[24] G. Tebes, L. Olsina, D. Peppino and P. Becker, “Specify-
ing and Analyzing a Software Testing Ontology at the
Top-Domain Ontological Level,” Journal of Computer
Science & Technology, vol. 21, no. 2, pp. 126-145, 2021.

[25] C. Pardo and J. Guerrero, “DevOps Ontology - An
ontology to support the understanding of DevOps
in the academy and the software industry,” Periodi-
cals of Engineering and Natural Sciences, vol. 11, no.
2, pp. 207-220, 2023.

http://sinteza.singidunum.ac.rs

