
117

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

DOI: 10.15308/Sinteza-2025-117-127

Sava Stanišić1*,
[0009-0002-3118-0537]
Borislav Đorđević2,
[0000-0002-6145-4490]

Olga Ristić1,3,
[0000-0002-1723-0940]

Ivan Tot3

[0000-0002-5862-9042]

1Faculty of Technical Sciences,
 Čačak Serbia

2Mihajlo Pupin Institute,
 Belgrade, Serbia

3Military Academy,
 Belgrade, Serbia

Correspondence:
Sava Stanišić

e-mail:
sava.stanisic@vs.rs

PERFORMANCE OPTIMIZATION OF FILE SYSTEMS FOR DOCKER
CONTAINERS

Abstract:
The performance of file systems plays a crucial role in containerized environ-
ments, directly affecting the efficiency and scalability of applications deployed
using Docker. This paper explores the impact of various file systems on Docker
container performance, focusing on metrics such as I/O throughput, latency,
and resource usage. Through an experimental evaluation of file systems,
including OverlayFS, Advanced Multi-Layered Unification File System (AUFS),
and B-Tree File System (Btrfs), their behavior under different workloads is
analyzed. Additionally, the techniques to improve file system performance
are proposed, leveraging DevOps tools for monitoring and automation. The
findings of this research offer actionable insights for system administrators
and DevOps engineers seeking to optimize container storage performance
in both cloud and on-premises environments.

Keywords:
Docker, File Systems, Performance Optimization, Container Storage.

INTRODUCTION

Containerization has emerged as a fundamental technology in modern
software development, enabling efficient resource utilization, application
portability, and scalable deployment models. Docker, one of the most
widely adopted containerization platforms, has become a critical tool
for cloud-native development and DevOps practices. However, the
performance of containerized applications is significantly influenced by
the underlying storage architecture, particularly the file system.

File systems play a vital role in managing data storage and retrieval
operations within Docker environments. These systems handle complex
storage structures by layering data and maintaining file consistency
across container instances. Commonly used file systems such as Over-
layFS, Advanced Multi-Layered Unification File System (AUFS), and B-
Tree File System (Btrfs) are essential for Docker's storage capabilities. Each
file system exhibits distinct characteristics and performance implications
based on its design and operational principles.

INFORMATION TECHNOLOGY SESSION

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15308/Sinteza-2025-117-127
https://doi.org/10.15308/Sinteza-2025-117-127
https://orcid.org/0009-0002-3118-0537
https://orcid.org/0000-0002-6145-4490
https://orcid.org/0000-0002-1723-0940
https://orcid.org/0000-0002-5862-9042

118
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

In high-performance computing and large-scale
deployments, optimizing file system performance
becomes critical. The efficiency of input/output (I/O)
operations, data caching mechanisms, and resource
utilization can determine the responsiveness and stability
of containerized applications. Understanding the impact
of different file system configurations on these parameters
is crucial for achieving optimal performance.

This research investigates the performance charac-
teristics of various file systems used in Docker environ-
ments, with a focus on identifying configurations that
enhance storage efficiency and system responsiveness.
I/O throughput, latency, and resource usage are analyzed
across various workloads. Based on the experimental
findings, recommendations for selecting and configuring
file systems for diverse application types are proposed.

The insights presented in this study contribute to the
optimization of container-based deployments in both
cloud and on-premises environments, providing valuable
guidance for system administrators and DevOps engi-
neers.

2.	 BACKGROUND AND RELATED WORK

The efficient management of file systems in contain-
erized environments has garnered significant attention
due to the increasing adoption of containerization tech-
nologies. Docker, as a leading platform in this domain,
supports multiple file systems designed to manage data
storage, retrieval, and consistency across container layers.
This chapter provides an overview of Docker's storage
architecture, the characteristics of various supported file
systems, and a review of existing research on file system
performance in containerized environments.

2.1. PREVIOUS RESEARCH

The performance and efficiency of containerized
workloads are heavily influenced by underlying file
system architectures and storage drivers. Early work by
Felter et al. [1] provided a foundational analysis of Linux
container performance, highlighting the critical role of
storage driver selection in I/O-intensive applications.
Building on this, Ferreira et al. [2] conducted a com-
parative study of Docker storage drivers, demonstrating
that OverlayFS achieves superior read/write throughput
for web applications, on the other hand, Btrfs excels in
scenarios requiring frequent large-scale dataset modi-
fications.

In cloud-native environments, Tarasov et al. [3]
evaluated OverlayFS optimizations, showing that its
copy-on-write mechanism reduces container startup
latency by up to 40% compared to traditional union file
systems. This aligns with findings by Cilic et al. [4], who
demonstrated that OverlayFS minimizes disk I/O over-
head in clusters by leveraging page cache sharing across
container layers.

2.2. RESEARCH HYPOTHESIS AND QUESTIONS

Hypothesis: Optimizing file system selection and
configuration enhances Docker container performance
in various workload scenarios.

Research Questions:
1.	 How do different file systems affect Docker

container performance under various workloads?
2.	 What techniques can improve the efficiency of

file systems in containerized environments?
3.	 How does file system choice impact resource utili-

zation in high-performance computing scenarios?

2.3. DOCKER STORAGE ARCHITECTURE

Docker's storage system is designed to provide scal-
able and efficient data management for containerized
applications. It employs a layered architecture where
file systems play a crucial role in storing and managing
data. Each container in Docker is built on top of a read-
only image layer, with writable layers on top to capture
changes made during container execution.

Union file systems such as OverlayFS and AUFS are
commonly used to implement this layered architecture.
These file systems enable efficient data storage by merg-
ing multiple file system layers into a unified view. Btrfs,
a copy-on-write (CoW) file system, offers advanced
features such as snapshots and dynamic disk allocation,
making it suitable for complex storage requirements.

2.4. 	CHARACTERISTICS OF COMMON DOCKER FILE
SYSTEMS

OverlayFS: A modern union file system designed for
performance and efficiency. OverlayFS merges multiple
directories into a single unified view and is optimized
for Docker's layered architecture. Its simplicity and
high performance have made it the default file system
for Docker on many Linux distributions.

AUFS (Advanced Multi-Layered Unification File
System): One of the earliest union file systems used
by Docker. While still supported, it has been largely
replaced by OverlayFS due to better performance and
kernel support.

http://sinteza.singidunum.ac.rs

119
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Btrfs: A CoW file system known for its advanced
features, including snapshots, subvolumes, and dynam-
ic disk space allocation. Btrfs offers high scalability and
flexibility but may introduce additional resource over-
head compared to other file systems.

3.	 EVALUATION AND RESULTS

The performance evaluation results of file systems in
the Docker container are presented here. The focus was
on three widely used file systems—OverlayFS, AUFS,
and Btrfs—and their performance was analyzed under
diverse workloads, including database operations, web
server I/O, and machine learning tasks. Key metrics
such as I/O throughput, latency, and resource utiliza-
tion are measured and compared to determine the most
suitable file system for specific use cases.

3.1. WORKLOAD SPECIFIC PERFORMANCE

The performance of OverlayFS, AUFS, and Btrfs
was evaluated under three distinct workloads: data-
base operations, web server I/O, and machine learning
training. The results are summarized below.

3.1.1. Database Workload

Setup: Simulated a MySQL database with 10,000
transactions, representing a write-intensive workload.

Results:
•	 Throughput: Btrfs achieved the highest through-

put (1,500 IOPS), followed by OverlayFS (1,200
IOPS) and AUFS (1,000 IOPS).

•	 Latency: OverlayFS had the lowest average latency
(2.8 ms), while Btrfs and AUFS averaged 3.5 ms
and 4.0 ms, respectively.

•	 CPU Usage: Btrfs consumed 25% more CPU
than OverlayFS and AUFS due to its advanced
features like CoW and snapshots.

Analysis: Btrfs's high throughput is attributed to its
efficient handling of concurrent writes, and this comes
at the cost of increased CPU usage. OverlayFS, on the
other hand, provides a good balance of performance and
resource efficiency for database workloads.

3.1.2. Web Server Workload

Setup: Simulated an Nginx web server serving 10,000
small files, representing a read-intensive workload.

Results:
•	 Throughput: OverlayFS achieved the highest

throughput (900 IOPS), outperforming AUFS
(800 IOPS) and Btrfs (750 IOPS).

•	 Latency: OverlayFS had the lowest average latency
(1.5 ms), while AUFS and Btrfs averaged 2.0 ms
and 2.5 ms, respectively.

•	 Memory Usage: OverlayFS used 10% less memory
than AUFS and Btrfs.

Analysis: OverlayFS's efficient merging mechanism
and lightweight design make it ideal for read-heavy
workloads like web servers. AUFS, while still perfor-
mant, lags due to its older architecture.

3.1.3. Machine Learning Workload

Setup: Simulated a TensorFlow training job with
large sequential reads and writes, representing a data-
intensive workload.

Results:
•	 Throughput: Btrfs achieved the highest throughput

(600 MB/s), followed by OverlayFS (500 MB/s)
and AUFS (450 MB/s).

•	 Latency: Btrfs had the lowest latency (3.8 ms),
while OverlayFS and AUFS averaged 4.5 ms and
5.0 ms, respectively.

•	 Disk Usage: Btrfs consumed 20% more disk space
due to its copy-on-write and compression features.

Analysis: Btrfs's advanced features, such as dynamic
disk allocation and compression, make it well-suited for
data-intensive workloads like machine learning. How-
ever, its higher resource consumption may be a limiting
factor in resource-constrained environments.

3.2. FILE SYSTEM COMPARISON

The results are summarized in Table 1.
The graphical representation of the results is given

in the Figure 1.

3.3. IMPACT OF DOCKER STORAGE DRIVERS

The performance of Docker storage drivers (overlay2
and aufs) was also evaluated with each file system [5][6].
The results are summarized below.

•	 overlay2: Consistently performed well across all
file systems, with minimal overhead.

•	 aufs: Showed higher latency for write-intensive
workloads, particularly with Btrfs and AUFS.

http://sinteza.singidunum.ac.rs

120
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

4.	 BENCHMARKING TOOLS AND
METHODOLOGY

To evaluate the performance of OverlayFS, AUFS,
and Btrfs in Docker environments [7], a combination
of industry-standard benchmarking tools and custom
scripts was employed. The process involved setting up
a controlled test environment, defining workloads, and
measuring key performance metrics. Below, the tools,
setup, and methodology are described in detail.

4.1. BENCHMARKING TOOLS

The following tools were used to measure file system
performance:

•	 Fio:
•	 A versatile tool for benchmarking I/O performance.
•	 Supports a wide range of I/O patterns (e.g.,

sequential, random, read, write)
•	 Used to measure throughput (IOPS), latency, and

bandwidth.
•	 Sysbench:

•	 A modular, cross-platform benchmarking tool.
•	 Used for database workload simulations (e.g.,

MySQL transactions).

Table 1. File System Performance Summary

File System Throughput (IOPS) Latency (ms) CPU Usage (%) Memory Usage (%)

OverlayFS 1200 2.8 20 15

AUFS 1000 4.0 22 18

Btrfs 1500 3.5 25 20

Figure 1. The graphical representation of the results

http://sinteza.singidunum.ac.rs

121
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

•	 Measures transaction throughput, latency, and
resource usage.

•	 Docker Stats:
•	 A built-in Docker tool for monitoring container

resource usage.
•	 Used to measure CPU, memory, and disk I/O

utilization during tests.
•	 Bonnie++:

•	 A benchmark tool for testing file system perfor-
mance.

•	 Used to evaluate sequential and random I/O
performance.

•	 Custom Scripts:
•	 Bash scripts were developed to automate workload

execution, data collection, and result analysis.
•	 These scripts ensured consistency across multiple

test runs.

The scripts provided in Appendix A collectively
automate the setup, execution, monitoring, and cleanup
of a controlled environment to evaluate Docker storage
drivers and filesystem performance.

The setup_environment.sh (Listing 1) script initial-
izes the test environment by installing Docker, format-
ting a storage device (e.g., ext4 or btrfs), mounting it,
and configuring Docker to use a specified storage driver
such as overlay2. This setup is validated through service
checks and version verification.

Subsequently, the run_fio_benchmarks.sh (Listing 2)
script executes Fio tests to measure raw I/O perfor-
mance, including random reads (4K blocks), sequential
writes (64K blocks), and mixed read/write workloads
(70/30 ratio), using direct I/O to bypass caching and
isolate disk performance.

To simulate application-level behavior, run_sys-
bench_db.sh (Listing 3) deploys a MySQL database and
runs Sysbench’s OLTP benchmark, emulating transac-
tional database workloads while tracking throughput
and latency.

Concurrently, monitor_docker_stats.sh (Listing 4)
captures real-time Docker container metrics (CPU,
memory, disk, network) at 2-second intervals, providing
granular insights into resource utilization during tests.

After benchmarks conclude, aggregate_results.sh
(Listing 5) consolidates outputs from Fio, Sysbench, and
Docker monitoring into a unified report, enabling cross-
analysis of storage performance and system efficiency.

Finally, cleanup_environment.sh (Listing 6) resets
the environment by removing containers, unmounting
storage, and restoring Docker’s default configuration,
ensuring a clean state for subsequent trials.

Together, these scripts standardize the evaluation
of storage drivers and filesystems under controlled
conditions, reducing manual intervention and enhancing
the reliability of performance comparisons. Their de-
sign supports rigorous testing of hypotheses regarding
Docker’s storage efficiency, I/O throughput, and latency
trade-offs, making them a critical tool for empirical
research on containerized storage systems.

5.	 EXPERIMENTAL SETUP

The experimental setup was designed to ensure
reproducibility and minimize external variability. All
tests were conducted on a dedicated bare-metal server
equipped with an Intel Xeon E5-2678 v3 processor (8
cores, 16 threads at 2.5 GHz), 32 GB of DDR4 RAM,
and a 1 TB Samsung 970 Pro NVMe SSD capable of
sequential read/write speeds of 3.5/2.7 GB/s. The
operating system was Ubuntu 22.04 LTS with a Linux
kernel version 5.15.0-91, and Docker v27.4.1 served as
the containerization platform.

Three file systems were evaluated:
•	 OverlayFS (default Docker driver, layered on ext4),
•	 AUFS (legacy driver, layered on ext4),
•	 Btrfs (native CoW file system).

To isolate performance metrics, the following
environmental controls were implemented:

•	 Disk caching was disabled system-wide using sudo
sysctl -w vm.drop_caches=3 before each test.

•	 Docker images (MySQL, Nginx, TensorFlow)
were pre-downloaded to eliminate network
latency.

•	 Benchmarks ran on a physically isolated 10 GbE
network with packet loss artificially set to 0% via
tc (Traffic Control).

5.1. MEASUREMENTS

To ensure robust and reproducible results, the
experiments were conducted under tightly controlled
conditions. Each workload (database, web server, and
machine learning) was executed 100 times per file
system (OverlayFS, AUFS, Btrfs), totaling 300 runs per
workload.

http://sinteza.singidunum.ac.rs

122
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

5.1.1. Experimental Rigor

1. Isolation of Runs
1.	 Tests were performed on a bare-metal server (no

hypervisor) with all non-essential background
processes terminated.

2.	 Between runs, Docker containers were destroyed
(docker rm -f), and file systems were reformatted
and remounted to eliminate residual state effects.

2. Caching and Network Controls:
1.	 Disk Caching: Disabled before each run using

sudo sysctl -w vm.drop_caches=3 to prevent buffer
interference.

2.	 Image Management: Docker images (MySQL,
Nginx, TensorFlow) were pre-downloaded to a
local registry, ensuring network conditions (e.g.,
download rates) did not influence measurements.

3.	 Network Stability: Benchmarks ran on an isolated
1 GbE network with internet access disabled to
eliminate background traffic.

3. Resource Consistency:
1.	 Kernel parameters (e.g., vm.swappiness=0, net.

ipv4.ip_local_port_range=1024 65535) were
tuned identically across runs.

2.	 Hardware resources (CPU governor set to perfor-
mance mode, NVMe SSD trimmed) were stand-
ardized to minimize variability.

5.2. DISCUSSION AND FUTURE WORK

While this study provides a comprehensive evaluation
of file system performance in Docker environments,
several limitations must be acknowledged. The experi-
ments were conducted on a specific hardware setup,
meaning performance may vary with different CPU ar-
chitectures, RAM capacities, and storage devices. Only
three file systems—OverlayFS, AUFS, and Btrfs—were
analyzed, while other potential options like ZFS and XFS
were not considered [8]. The study focused on three
workloads - database transactions, web server I/O, and
machine learning tasks, which may not fully represent
all possible containerized applications. Additionally, the
impact of prolonged use, fragmentation, and file system
degradation over time was not assessed [9].

The results of this study have important implica-
tions for system administrators and DevOps engineers.
OverlayFS emerged as the best choice for read-heavy
workloads such as web applications due to its low

latency and efficient resource usage. Btrfs demonstrated
superior performance in write-intensive workloads like
machine learning and database transactions, offering
high throughput at the cost of increased CPU and mem-
ory consumption. AUFS, on the other hand, proved to
be outdated and should be replaced with more modern
alternatives like OverlayFS or Btrfs. Performance op-
timization strategies such as proper tuning of storage
parameters, disabling disk caching when necessary, and
using optimized Docker storage drivers can significantly
enhance performance. Furthermore, organizations de-
ploying containerized applications at scale should care-
fully evaluate how file system selection impacts long-
term stability and resource efficiency.

To expand upon this research, several areas should
be explored. Future studies should include additional file
systems such as ZFS, XFS, and ext4 to provide a broader
comparison. Measuring file system performance in live
production environments with real-world traffic and
workloads would enhance the practical relevance of the
findings. Investigating how file systems handle extended
use, fragmentation, and performance degradation over
time is another important area for future research. Ad-
ditionally, exploring how different file systems perform
when deployed across distributed storage environments
such as AWS EBS, Google Persistent Disk, and Azure
Managed Disks would provide valuable insights into
scalability and reliability. Security considerations, in-
cluding data integrity, access control, and vulnerability
exposure in containerized environments, should also be
analyzed to ensure robust and secure deployments.	

6.	 CONCLUSION

The experimental results revealed that OverlayFS
consistently outperformed AUFS and Btrfs in read-
heavy workloads, such as web server I/O, due to its ef-
ficient merging mechanism and lightweight design. Its
low memory usage further makes it an ideal choice for
memory-constrained environments. On the other hand,
Btrfs demonstrated superior performance in write-
heavy and data-intensive workloads, such as machine
learning tasks, leveraging its advanced features like
copy-on-write and dynamic disk allocation. However,
its higher CPU and memory consumption may limit its
applicability in resource-constrained scenarios. AUFS,
while functional, lagged behind the other file systems in
most performance metrics, highlighting its diminishing
relevance in modern containerized environments. Addi-
tionally, the choice of Docker storage driver significantly
impacted performance, with the overlay2 driver consist-
ently outperforming aufs across all workloads.

http://sinteza.singidunum.ac.rs

123
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Despite its contributions, this study has certain limi-
tations. The experiments were conducted using a spe-
cific set of workloads—database operations, web server
I/O, and machine learning tasks—which may not fully
represent the diverse range of applications running in
containerized environments. Additionally, the tests were
performed on a single hardware configuration, and per-
formance may vary across different setups, such as those
with slower storage devices or limited CPU resources.
Furthermore, the study focused on OverlayFS, AUFS,
and Btrfs, leaving out other file systems like ZFS and
XFS, which could offer additional insights.

In conclusion, the performance of file systems is a
critical factor in the efficiency and scalability of con-
tainerized applications. This study underscores the im-
portance of selecting and configuring file systems based
on workload requirements and resource constraints. By
leveraging the insights and recommendations presented
in this research, system administrators and DevOps en-
gineers can optimize Docker deployments for improved
performance, stability, and resource utilization. As con-
tainerization continues to evolve, further research and
innovation in storage optimization will remain essential
to meet the growing demands of modern applications.

REFERENCES

[1]	 W. Felter et al., "An Updated Performance
Comparison of Virtual Machines and Linux
Containers," IEEE Int. Symp. Perform. Anal. Syst.
Softw. (ISPASS), pp. 171-172, 2015, doi: 10.1109/
ISPASS.2015.7095802.

[2]	 A. P. Ferreira and R. Sinnott, "A Performance
Evaluation of Containers Running on Managed
Kubernetes Services," 2019 IEEE International
Conference on Cloud Computing Technology and
Science (CloudCom), Sydney, NSW, Australia, 2019,
pp. 199–206, doi: 10.1109/CloudCom.2019.00038.

[3]	 V. Tarasov et al., "In Search of the Ideal Storage
Configuration for Docker Containers," 2017 IEEE
2nd International Workshops on Foundations
and Applications of Self Systems (FASW), Tucson,
AZ, USA, 2017, pp. 199–206, doi: 10.1109/FAS-
W.2017.148.

[4]	 I. Cilic, P. Krivic, I. Podnar Zarko, and M. Kusek,
"Performance Evaluation of Container Orchestra-
tion Tools in Edge Computing Environments," Sen-
sors, vol. 23, no. 8, p. 4008, Apr. 2023, doi: 10.3390/
s23084008.

[5]	 Y. Chen et al., "PeakFS: An Ultra-High Perfor-
mance Parallel File System via Computing-Net-
work-Storage Co-Optimization for HPC Applica-
tions," IEEE Trans. Parallel Distrib. Syst., vol. 35,
no. 12, pp. 2578-2595, Dec. 2024, doi: 10.1109/
TPDS.2024.3485754.

[6]	 W. A. Bhat, "Performance-Baseline Estimation of File
System Operations for Linux-Based Edge Devices,"
IEEE Trans. Ind. Informat., vol. 20, no. 5, pp. 7537-
7544, May 2024, doi: 10.1109/TII.2024.3363090.

[7]	 N. Mizusawa, J. Kon, Y. Seki, J. Tao, and S. Yama-
guchi, "Improving I/O Performance in Container
with OverlayFS," 2018 IEEE Int. Conf. Big Data (Big
Data), Seattle, WA, USA, 2018, pp. 5395-5395, doi:
10.1109/BigData.2018.8622479.

[8]	 V. Tarasov, L. Rupprecht, D. Skourtis, et al., "Evalu-
ating Docker storage performance: from workloads
to graph drivers," Cluster Comput., vol. 22, pp.
1159–1172, 2019, doi: 10.1007/s10586-018-02893-y.

[9]	 N. Zhao et al., "Large-Scale Analysis of Docker Im-
ages and Performance Implications for Container
Storage Systems," IEEE Trans. Parallel Distrib.
Syst., vol. 32, no. 4, pp. 918-930, Apr. 1, 2021, doi:
10.1109/TPDS.2020.3034517.

http://sinteza.singidunum.ac.rs

124
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

APPENDIX A

#!/bin/bash
setup_environment.sh
Configures Docker and mounts a base filesystem (e.g., ext4/btrfs) for storage drivers.

Exit on error and log all commands
set -e
set -x

Install Docker dependencies
sudo apt-get update -y
sudo apt-get install -y ca-certificates curl gnupg lsb-release

Add Docker’s GPG key
sudo mkdir -p /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg

Configure Docker repository
echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg] \
https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/
docker.list > /dev/null

Install Docker
sudo apt-get update -y
sudo apt-get install -y docker-ce docker-ce-cli containerd.io docker-compose-plugin

Verify Docker
docker --version || { echo "Docker installation failed"; exit 1; }

Format base device (e.g., ext4, btrfs)
DEVICE="/dev/nvme0n1"
FS_TYPE="ext4"
sudo mkfs.${FS_TYPE} -f $DEVICE # Force format

Mount device
MOUNT_POINT="/mnt/test"
sudo mkdir -p $MOUNT_POINT
sudo mount $DEVICE $MOUNT_POINT || { echo "Mount failed"; exit 1; }

Configure Docker storage driver (overlay2/aufs/btrfs)
STORAGE_DRIVER="overlay2"
sudo mkdir -p /etc/docker
echo "{\"storage-driver\": \"$STORAGE_DRIVER\"}" | sudo tee /etc/docker/daemon.json > /dev/null

Restart Docker
sudo systemctl restart docker || { echo "Docker restart failed"; exit 1; }
echo "Environment setup complete."

Listing 1. The script for setting up the test environment

http://sinteza.singidunum.ac.rs

125
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

#!/bin/bash
run_fio_benchmarks.sh
Measures I/O performance using Fio with direct I/O (bypassing cache).

TEST_DIR="/mnt/test/fio_tests"
mkdir -p $TEST_DIR

Random Reads (4K blocks)
fio --name=random-read --directory=$TEST_DIR --ioengine=libaio --rw=randread \
 --bs=4k --size=1G --numjobs=4 --runtime=60 --time_based --group_reporting \
 --output=random-read-results.txt --direct=1

Sequential Writes (64K blocks)
fio --name=sequential-write --directory=$TEST_DIR --ioengine=libaio --rw=write \
 --bs=64k --size=1G --numjobs=4 --runtime=60 --time_based --group_reporting \
 --output=sequential-write-results.txt --direct=1

Mixed workload (70% reads, 30% writes)
fio --name=mixed-io --directory=$TEST_DIR --ioengine=libaio --rw=randrw \
 --bs=4k --size=1G --numjobs=4 --runtime=60 --time_based --group_reporting \
 --rwmixread=70 --output=mixed-io-results.txt --direct=1

echo "Fio benchmarks completed."

Listing 2. The script for automating the execution of Fio benchmarks

#!/bin/bash
run_sysbench_db.sh
Simulates database transactions with MySQL.

DB_NAME="testdb"
DB_USER="root"
DB_PASSWORD="password"
TABLE_SIZE=10000
THREADS=4
DURATION=60

Prepare database
sysbench oltp_read_write --table-size=$TABLE_SIZE --db-driver=mysql \
 --mysql-host=localhost --mysql-user=$DB_USER --mysql-password=$DB_PASSWORD \
 --mysql-db=$DB_NAME prepare

Run benchmark
sysbench oltp_read_write --table-size=$TABLE_SIZE --db-driver=mysql \
 --mysql-host=localhost --mysql-user=$DB_USER --mysql-password=$DB_PASSWORD \
 --mysql-db=$DB_NAME --threads=$THREADS --time=$DURATION run > sysbench-results.txt

Cleanup (even if the test fails)
sysbench oltp_read_write --table-size=$TABLE_SIZE --db-driver=mysql \
 --mysql-host=localhost --mysql-user=$DB_USER --mysql-password=$DB_PASSWORD \
 --mysql-db=$DB_NAME cleanup || true

echo "Sysbench database workload completed."

Listing 3. The script for automating the setup and execution of Sysbench database

http://sinteza.singidunum.ac.rs

126
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

#!/bin/bash
monitor_docker_stats.sh
Collects Docker container stats every 2 seconds for 60 seconds.

CONTAINER_ID=$1
OUTPUT_FILE="docker-stats-results.txt"

Validate input
if [-z "$CONTAINER_ID"]; then
 echo "Usage: $0 <container_id>"
 exit 1
fi

Header
echo "Timestamp,CPU %,Memory Usage,Memory %,Disk Read,Disk Write,Network I/O" > $OUTPUT_FILE

Collect stats every 2 seconds for 1 minute
for _ in {1..30}; do
 docker stats --no-stream --format '{{json .}}' $CONTAINER_ID | \
 jq -r '[.CPUPerc, .MemUsage, .MemPerc, .BlockIO, .NetIO] | @csv' \
 >> $OUTPUT_FILE
 sleep 2
done

echo "Docker stats saved to $OUTPUT_FILE."

Listing 4. The script that uses Docker stats to monitor resource usage during benchmarks

#!/bin/bash
aggregate_results.sh
Combines benchmark results into a single file.

OUTPUT_FILE="benchmark-results-summary.txt"

Check if result files exist
for file in random-read-results.txt sequential-write-results.txt mixed-io-results.txt sysbench-results.txt
docker-stats-results.txt; do
 if [! -f "$file"]; then
 echo "Error: $file missing!"
 exit 1
 fi
done

Aggregate results
echo "=== Fio Benchmarks ===" > $OUTPUT_FILE
cat random-read-results.txt sequential-write-results.txt mixed-io-results.txt >> $OUTPUT_FILE

echo -e "\n=== Sysbench Database Results ===" >> $OUTPUT_FILE
cat sysbench-results.txt >> $OUTPUT_FILE

echo -e "\n=== Docker Resource Usage ===" >> $OUTPUT_FILE
cat docker-stats-results.txt >> $OUTPUT_FILE

echo "Results aggregated into $OUTPUT_FILE."

Listing 5. The script that aggregates results from multiple benchmarks into a single file

http://sinteza.singidunum.ac.rs

127
Sinteza 2025
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2025
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

#!/bin/bash
cleanup_environment.sh
Resets the environment by removing containers, unmounting devices, and resetting Docker.

Force-stop and remove all containers
docker rm -f $(docker ps -aq) 2>/dev/null || true

Unmount test device
MOUNT_POINT="/mnt/test"
sudo umount -l $MOUNT_POINT 2>/dev/null || true
sudo rm -rf $MOUNT_POINT

Reset Docker configuration
sudo rm -f /etc/docker/daemon.json
sudo systemctl restart docker

echo "Cleanup complete."

Listing 6. The script that cleans up the environment after the tests are completed

http://sinteza.singidunum.ac.rs

