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Abstract: 
Cycle-Consistent Generative Adversarial Networks (CycleGANs) are able to 
provide a highly under-constrained mapping between input and output data 
samples, i.e., source and target data domain, in cases when the aligned dataset 
is unavailable, in an unsupervised training fashion, using cycle-consistency loss 
mechanisms. On the other hand, most image-to-image and speech-to-speech 
translation tasks use the aligned, i.e., paired input-output training datasets. A 
large amount of data is necessary to train such architectures, while one of the 
domains could be scarce. 
Several possible improvements to the original CycleGAN architecture are analysed 
in this paper for the cases when only a small percentage of training samples are 
aligned among source and target data domains. A semi-supervised approach is 
proposed to achieve better translation accuracy and prevent overfitting of the 
scarce data domain discriminator during initial training iterations. The train-
ing database is augmented by adding samples generated by inverse CycleGAN 
mappings after several training epochs (when the network is sufficiently trained) 
into the training pool of the discriminator of scarce, i.e., reduced data domain. 
An additional optimization constraint is also proposed, aligning probability 
distributions of feature maps belonging to the same-depth neural network lay-
ers of direct GAN encoder and inverse GAN decoder, to reinforce resemblance 
among object representations in various data domains.  
Significantly better performances are obtained using proposed improvements 
in both image-to-image and speech-to-speech translation tasks, by observing 
standard qualitative and quantitative measures, in comparison to the baseline 
CycleGAN training approach.

Keywords: 
Style Adaptation, Generative Adversarial Networks, Cycle-Consistency, Semi-
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INTRODUCTION

Style transfer is a machine-learning technique presuming the trans-
lation of a particular referent style (e.g., painting technique, seasonal 
landscape features, colour schemes, etc. in case of images [1], or speaker 
characteristics, speaker emotion, pronunciation style, prosody, etc. in 
case of speech [2]) from one data sample to another (source to target do-
main), preserving at the same time the core attributes (content, structural 
features, semantics) of the original sample. Supervised learning methods 
use pairs of training data samples to be able to learn a one-direction 
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sample-to-sample mapping among samples containing 
the same structural information. Many of those methods 
have originated from the conditional GAN (cGAN) 
training method [3], able to incorporate supplementary 
information (e.g., class labels), learning the difference 
between any two particular samples presenting the same 
entity in various domains. 

Pix2Pix training architecture represents a fully-
supervised cGAN-based training strategy comprising a 
U-Net-based generator [4] and a convolutional Patch-
GAN discriminator [5] able to cope with an extensive 
range of image-to-image translation tasks. Pix2Pix oper-
ates on real data in conjunction with labels in order to 
acquire mapping from the source to the target domain 
along with the reconstruction loss function, using pairs 
of one-to-one corresponding image representations 
from both domains. Albeit highly efficient, Pix2Pix can-
not easily capture complex scene structural correlations 
using a single mapping, i.e., a single translation network 
(one generator and one discriminator). Furthermore, 
it is often difficult to aggregate a sufficient quantity of 
paired domain-to-domain training data to be able to 
train the network assuming appropriate precision and 
robustness. The latter is also a drawback of other super-
vised learning methods, such as DRPAN [6], ASAPNet 
[7] and SPADE [8].

Unsupervised learning methods, such as CycleGAN 
[9], CoGAN [10], DiscoGAN [11] or UNIT [12], learn 
corresponding mappings using sets of unaligned train-
ing samples from source and target domains (commonly 
highly under-constrained one-to-many-approach). Cy-
cleGAN employs two GANs working in opposite direc-
tions (each one has one generator and one discriminator 
able to provide mappings from source to target domain 
and back), and a cycle-consistency loss combined with 
adversarial loss, imposing bijection (mappings become 
reverses of each other by enforcing structural similar-
ity between the original, i.e., source, and translated data 
samples after both forward and backward procedures 
have been completed). However, CycleGANs are un-
able to perform complex geometrical transformations 
and they are prone to diminish gradient issues and other 
types of instabilities, e.g., there are observable disparities 
in performances of the supervised (trained using pairs of 
one-to-one corresponding data samples) and the unsu-
pervised version (trained using unaligned data).

Triggered as a result of a deficient number of struc-
turally correlated samples between the source and the 
target domain (in the case when one of the domains 
is scarce), a bootstrapped semi-supervised BTS SSL 

CycleGAN algorithm is proposed [1]. Semi-supervised 
learning (SSL) strategy exploits the advantage of having 
a certain percentage of the aligned data samples in the 
training database to increase the accuracy and improve 
the overall performance of the CycleGAN algorithm, and 
at the same time prevents overfitting of both generator 
and discriminator related to the scarce domain using the 
rest of data in an unsupervised manner. The second step 
presumes periodical insertion (i.e., bootstrapping) of sam-
ples artificially produced by the generator related to the 
fully observable domain to the original training pool of the 
discriminator representing the scarce domain, but only 
after several training iterations have already been com-
pleted (the generator is adequately trained). 

Feature Map Regularised FMR CycleGAN approach 
[13] adds an additional cycle-consistency loss to the 
objective function. The loss is calculated between prob-
ability density functions (PDFs) representing feature-
map statistics of the same-depth neural network layers 
of the direct GAN encoder and the inverse GAN decoder 
to increase similarity among the original and fully 
transformed (i.e., passed through forward and backward 
cycles) features. Starting from the assumption that the 
PDFs could be observed as Gaussians embedded into 
the cone of the symmetric positive definite (SPD) matrices,  
various statistics-based as well as geodesic-ground-
distance-based measures can be utilised as a part of the 
objective function within the training procedure.

Both BTS SLL CycleGAN and FMR CycleGAN 
models could be employed independently for a multitude 
of domain-specific style adaptation tasks, such as image-to-
image translation or speech enhancement analysed in this 
paper, the first one requiring only a small number of the 
aligned data samples during initial training epochs. Base-
line CycleGAN architecture is briefly described in Section 
2. BTS SSL CycleGAN is presented in Section 3, and FMR 
CycleGAN in Section 4. In Section 5, experimental results 
are presented for a variety of image-to-image translation 
tasks and a speech enhancement, i.e., noise reduction 
task. Conclusions are drawn in Section 6.
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2. CYCLEGAN (BASELINE APPROACH)

CycleGAN [9] is an unsupervised training approach 
aiming to learn a translation of samples from the origi-
nating domain X into a target domain Y. The architec-
ture consists of two generators, GX→Y (direct) and GY→X 

(inverse), and the associated adversarial discriminators, 
DX and DY. The idea behind the adversarial loss is rela-
tively simple. The generators GX→Y and GY→X, stimulated 
by discriminators DX and DY, attempt to minimise the 
difference between GX→Y(x) and y, as well as GY→X(y) and 
x, x∈X, y∈Y, i.e., GX→Y(x) should be as close as possible 
to y and GY→X(y) should be as close as possible to x, while 
discriminators DX and DY try to distinguish between real 
(x,y) and translated samples (GY→X(y),GX→Y(x)). 

The adversarial objectives (1) and (2)

(1)

(2)

Equation 1 – Adversarial objectives.

where pX(x) and pY(y) represent source and target 
data distributions, are additionally coupled with forward 
and backward cycle-consistency objectives, given by 

Equation 2 – Cycle-consistency objective.

providing cycle-consistent forward and backward 
mappings (i.e., after one full cycle, translated samples 
should be as close as possible to the original samples 
provided as inputs), and the identity loss

Equation 3 – Identity objective.

regularizing the generators GX→Y and GY→X, producing 
near identity mappings in cases when real samples of the 
target domain are provided as inputs.

The optimisation problem can now be represented as

Equation 4 – CycleGAN optimization problem.

where                                          represents a full Cycle-
GAN objective function given by

Equation 5 – CycleGAN objective function.

using λcyc and λid as the appropriate mixing coeffi-
cients.

3. BTS SSL CYCLEGAN

3.1. SEMI-SUPERVISED LEARNING

BTS SSL CycleGAN approach [1] represents a task-
independent solution for unbalanced data domains, i.e., 
when one of the domains is fully observable, the other 
one is scarce, and a certain predefined number of data 
samples are matched, i.e., presented in pares containing 
the same core information (e.g., data structure, shape, 
object representation) for source and target data do-
mains. For any predefined number of labelled (paired) 
data samples {(xi,yi)|i=1,…,m}⊂X×Y, a supervised train-
ing procedure is applied by introducing an additional 
‖∙‖1 norm term given in Equation 6 into the overall 
objective function given in Equation 5, enforcing simi-
larity and closeness among the same-labelled data rep-
resentations. The error is calculated for both direct and 
inverse mappings, averaged over pairs of correlated data 
samples. 

If m is the number of correlated (paired) data samples, 
the SSL objective is given by

Equation 6 – SSL objective.

meaning that the full BTS SLL CycleGAN objective 
function can now finally be defined as

Equation 7 – BTS SSL CycleGAN objective function.

for appropriate values of mixing coefficients λcyc, λid, and λSSL.

SSL strategy enables exploitation of an entire training 
dataset (for unlabelled samples, the standard CycleGAN 
objective function given in Equation 5 is applied instead 
of BTS SLL objective function given in Equation 7), which 
in turn prevents overfitting due to a limited number of 
paired data samples, providing better stability and 
increased accuracy.
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3.2. BOOTSTRAPPING

Bootstrapping strategy is applied after a predefined 
number of training epochs, i.e., when the generator GY→X 
is sufficiently trained and reasonably reliable, to over-
come the imbalance issue between the scarce domain 
X and the fully observable domain Y. Randomly gen-
erated samples, produced by generator GY→X previously 
initialised within the SLL training procedure described 
in Subsection 3.1 (or after the unsupervised procedure 
described in Section 2), are added to the training pool of 
discriminator of the scarce domain DX (at the same time, 
training pool of the discriminator DY remains intact). 
The bootstrapping is periodically repeated in conjunction 
with the SLL strategy during subsequent training itera-
tions (each time more precise), replacing (instead of accu-
mulating) previously generated samples and increasing 
the number of training samples in the scarce domain 
X. Consequently, improved discrimination capabilities 
of the scarce domain discriminator DX are obtained, 
eventually improving the general performance of the 
proposed BTS SLL CycleGAN algorithm, as proven by 
experiments.

4. FMR CYCLEGAN

Presuming the same internal structure of direct 
and inverse network generators GX→Y and GY→X, FMR 
CycleGAN approach [13] introduces an additional 
cycle-consistent loss calculated among the same-depth 
input-output feature-map tensors represented as PDFs. 
In the case of the direct CycleGAN generator GX→Y,     
                                 and                                  represent  
feature-map tensors of the first and the last GX→Y layer calcu-
lated for sample x∈X. In the case of the inverse CycleGAN 
generator GY→X, feature-map tensors of the first and the last 
layer of GY→X are denoted as                                    and 
                                     for sample y∈Y.

F_(X→Y and F_(Y→X can be reshaped into d-dimen-
sional-column-based matrices of size d×(m{f,l}∙n{f,l}) in the 
following way

 (1)

(2)

Equation 8 – Feature map matrices.

Starting from the assumption that the underlying 
PDFs f_(X and f_(Yof feature maps F_)  and F_(Y can 
be represented as d-dimensional multivariate Gaussians, 
their Maximum Likelihood (ML) estimates can be ob-
tained as

(1)

(2)
Equation 9 – ML estimates of covariance matrices  

Σ_(X→Y)^{f,l}  (x) and Σ_(Y→X)^{f,l}  (y)

where

 (1)

(2)

Equation 10 – ML estimates of mean vectors  
μ_(X→Y)^({f,l}) (x) and μ_(Y→X)^({f,l}) (y).

for any given x∈X and y∈Y.

The proposed feature-map-based cycle-consistent 
loss term can now be defined as 

Equation 11 – FMR objective.

where dgrd represents some of the ground-based 
distances discussed in Section 5, providing the full FMR 
CycleGAN objective function as

Equation 12 – FMR CycleGAN objective function.

for given λcyc, λid, and λFMR as mixing coefficients.

5. EXPERIMENTAL RESULTS

5.1. IMAGE-TO-IMAGE TRANSLATION

In Table 1 and Table 2, the results are presented 
for the Pix2Pix network architecture presented in [5], 
baseline CycleGAN architecture proposed in [9], BTS 
SLL CycleGAN architecture described in Section 3 (in-
cluding the results obtained using separate SSL and BTS 
training mechanisms referred in Subsections 3.1 and 3.2, 
respectively), and the FMR CycleGAN training strategy 
proposed in Section 4, in terms of the standard objec-
tive Peak Signal-to-Noise Ratio (PSNR) and Structural 
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Similarity Index (SSIM) measurements [1]. PSNR meas-
urement is used as an energy-preserving measurement 
to estimate the quality of generated images versus their 
original counterparts. SSIM, on the other hand, evalu-
ates image quality degradation as a perceived change in 
structural information. Both BTS SLL CycleGAN and 
FMR CycleGAN training architectures are built upon 
the baseline CycleGAN architecture, adding the proper 
loss term into the objective function, and the previously 
described bootstrapping mechanism in the case of the 
BTS SSL CycleGAN approach.

Three different image-to-image translation tasks 
have been conducted using various datasets (the Google 
Maps dataset, containing 1096 training images, the City-
Scapes dataset containing 2975 training images, and the 
CMP Facade dataset, containing 400 training images). 
The final scores were calculated using 50 generated im-
ages after 200 training epochs (a fixed learning rate value 
of 0.0002 was used for the first 100 epochs, decaying to 
zero during subsequent epochs). 

The parameters λcyc, λid, λSSL and λFMR have all been 
fixed and set to 10. In the case of the FMR CycleGAN, 
various ground-based distances have been examined, 
namely, the robust L1-based distance (FMRL1), the 
Kullback-Leibler divergence (FMRKL), and the Log-
Euclidean metric (FMRLE) [13]. In the case of (semi-)
supervised methods (Pix2Pix, SSL and BTS SSL), the size 
of the scarce domain has been manipulated {25, 50, 100}, 
changing the percentage of paired domain-to-domain 
training data. However, for the unsupervised training 
procedures (baseline CycleGAN, FMRL1, FMRKL, and 
FMRLE CycleGANs), the whole training dataset has been 
employed.

Both the semi-supervised learning and the boot-
strapping training strategies contribute to the increase of 
average PSNR and SSIM values, simultaneously improv-
ing performances of the proposed BTS SSL CycleGAN 
algorithm in comparison with the baseline CycleGAN 
algorithm, and in some cases, even the fully-supervised 
Pix2Pix algorithm has been outperformed. 

Table 1 - PSNR measures.

Dataset SX [%] Pix2Pix CycleGAN SSL BTS BTS SSL FMRL1 FMRKL FMRLE

CityScapes

25 19.98 18.30 17.30 18.77

50 20.45 18.95 17.18 19.04

100 19.51 17.12 20.03 17.75 20.47 17.89 18.86 17.34

CMP Facade

25 13.78 11.78 10.81 11.83

50 14.24 13.22 11.92 13.75

100 14.25 10.98 12.88 11.52 13.21 10.81 11.45 11.37

Google Maps

25 30.35 30.62 30.55 31.20

50 30.55 30.68 29.81 30.88

100 30.01 30.24 30.92 30.27 31.23 31.15 30.85 30.32

Table 2 – SSIM measures.

Dataset SX [%] Pix2Pix CycleGAN SSL BTS BTS SSL FMRL1 FMRKL FMRLE

CityScapes

25 0.60 0.59 0.58 0.61

50 0.64 0.61 0.59 0.64

100 0.59 0.54 0.58 0.63 0.65 0.58 0.65 0.56

CMP Facade

25 0.35 0.31 0.27 0.32

50 0.40 0.37 0.28 0.40

100 0.42 0.27 0.33 0.35 0.41 0.31 0.29 0.28

Google Maps

25 0.67 0.73 0.75 0.77

50 0.68 0.75 0.76 0.79

100 0.69 0.73 0.75 0.77 0.81 0.76 0.74 0.73
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Also, due to the additional alignment between fea-
ture maps of input-output generators layers, compared 
with the baseline CycleGAN algorithm, FMR CycleGAN 
provides better results in most cases and for all ground 
distances used (FMRL1, FMRKL, and FMRLE). Visually 
pleasing and structurally more accurate results have 
been obtained using the proposed BTS SSL and FMR 
CycleGAN algorithms in comparison to the baseline 
CycleGAN and Pix2Pix (Figure 1).

5.2. SPEECH ENHANCEMENT

The BTS SSL CycleGAN algorithm described in this 
paper has also been applied within a speech enhancement, 
i.e. noisy to clean speech translation (style adaptation) 
task [2]. The results are given in Table 3 and Table 4, in 
terms of the Perceptual Evaluation of Speech Quality 
(PESQ, [14]) measures PEQMOS and MOSLQO, and 
the Virtual Speech Quality Objective Listener (ViSQOL, 
[15]) measures VISQOL and NSIM, respectively. The  
architecture presented in [16] has been employed, ena-
bling parallel processing of the sequential data. 5000 train-
ing epochs have been conducted, using the generator(s) 
learning rate of 0.0002, and the discriminator(s) learning 
rate of 0.0001. 

Spectral features have been extracted from randomly 
chosen signal snippets of 128 frames. The training da-
tabase contains 200 clean and 200 artificially gener-
ated noisy speech samples (including both stationary 
and non-stationary noise components, such as back-
ground speech, traffic noise, creaking, etc.). The results 
are averaged over 50 test samples, by comparisons be-
tween the transformed noisy to clean speech samples 
and their clean speech counterparts. Presented results 
support our previous observations (BTS and SSL com-
ponents separately, as well as in conjunction, provide 
more favourable results compared to the baseline Cycle-
GAN algorithm for any percentage of the scarce noisy 
speech domain used in a supervised manner). Figure 
2 shows the spectrograms of a selected noisy part of a 
noisy speech signal transformed using the proposed al-
gorithms (blue-green-yellow colour range symbolises 
lowest to highest noise energy). While preserving the 
vocal component in most cases (speech around non-
stationary noise components has been filtered in some 
cases), noise has been significantly reduced, which also 
corresponds to the results obtained by subjective (listen-
ing) evaluations.

Figure 1 – Google Maps image-to-image translation task (100% of the scarce domain used).

Table 3 - PESQ measures.

SX [%] CycleGAN SSL BTS BTS SSL

PEQMOS MOSLQO PEQMOS MOSLQO PEQMOS MOSLQO PEQMOS MOSLQO

25 0.831 1.179 0.832 1.171 0.837 1.178

50 0.864 1.184 0.842 1.186 0.857 1.191

100 0.828 1.178 0.853 1.211 0.850 1.232 0.867 1.238
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6. CONCLUSION

In this paper, the performances of the proposed BTS 
SSL CycleGAN algorithm, introducing a semi-super-
vised learning strategy and a bootstrapping method, 
and the FMR CycleGAN algorithm, adding an addi-
tional feature map regularisation, have been compared 
among each other and also against the baseline unsu-
pervised CycleGAN and supervised Pix2Pix approaches. 
The first one improves performance in the case of highly 
imbalanced domain-to-domain style adaptation tasks. 
The second one achieves more favourable results in an 
unsupervised training scenario, compared to the base-
line unsupervised CycleGAN approach, and close to the 
supervised Pix2Pix approach. Improvements behind the 
bootstrapping logic of the BTS SSL, reducing computa-
tional complexity of geodesic and information distances 
calculations during the FMR training phase, improving 
the performance of speech enhancement around non-
stationary noise components, and analysing additional 
use case scenarios, such as speech style (emotion) trans-
formation, will be the subject of future study. 
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