
76

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2023-76-84

Borivoj Bogdanović,
Zora Konjović*,
Đorđe Obradović

Singidunum University,
Belgrade, Serbia

Correspondence:
Zora Konjović

e-mail:
zkonjovic@singidunum.ac.rs

BAB (BUSINESS APPLICATION BUILDER) FRAMEWORK FOR
RAPID DEVELOPMENT OF BUSINESS INFORMATION SYSTEMS

Abstract:
This paper presents the BAB (Business Application Builder), a software
framework for the rapid development of business information systems prone
to frequent changes in business conditions and/or user requirements. The
proposed framework is a programming pattern for a business information
system in which a business information system is modeled as a set of related
design patterns that implement common features of a class of business infor-
mation systems. An object-oriented approach and a design pattern concept
were used to model the framework, while the implementation is done using
(but not limited to) selected technologies. The proposed solution is evaluated
through the example of a business information system of medium complexity.

Keywords:
Business Information System, Meta-Model, Software Development, Rapid
Application Development.

INTRODUCTION

Modern society has faced increased global interconnectedness facili-
tated by technological advancements for decades [1], [2]. To optimize
business processes, automate tasks, and facilitate the work of employees,
the information systems supporting the business logic and workflow of
organizations have become increasingly complex. Modern information
systems are required to enable users to work from spatially and globally
distributed locations, use diverse devices [3], and interact with compo-
nents (data, computer programs) that are logically and spatially distrib-
uted and, most often, largely heterogeneous [4]. Additional aspects that
are especially important for the subject of this paper are two mutually
opposed goals to be met: rapidly changing user requirements (both func-
tional and non-functional) [5], and the severe requirement for continuous
software integration and delivery [6]. This all means that, from a devel-
oper's point of view, a capacity for rapid development, easy maintenance,
and a quick upgrade of software is of crucial importance. As an attempt
to respond to these requirements, in this paper, we propose the BAB
(Business Application Builder) Framework. The paper is composed of
six sections.

INFORMATION TECHNOLOGY SESSION

http://sinteza.singidunum.ac.rs
https://doi.org/10.15308/Sinteza-2023-76-84

77
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Following this introduction, the second section pre-
sents the abstraction process and abstract component
model of the BAB framework. The third section describes
the BAB framework architecture, while the fourth one
explains how to use the BAB framework and evaluates it
through the building of a complex pattern of a business
information system. The fifth section describes the
implementation of the BAB framework. Section six brings
the conclusion, containing the review of the results, the
framework’s constraints, and plans for further work.

2. ABSTRACT COMPONENT MODEL OF THE
BAB FRAMEWORK

Starting from an abstract definition of an information
system based on literary sources [4], [7], [8], [9]] and
applying methods of analysis and synthesis to selected
classes of business information systems, the character-
istics of business information systems are distinguished,
which are then mapped to the requirements that should
be met by the BAB framework.

For our purposes, we use a slightly modified definition
of an information system proposed in [7]: An information
system is a system in which people and/or machines
perform work (processes and activities) using information
and information technology to produce information
products and/or services for internal or external users.
Starting from this definition, we can view an information
system as a set of coordinated components that together
enable the collection, processing, production, and distri-
bution of information.

The following approach is used for the abstraction
of the business information system underlying the BAB
framework.

1. Literature sources describing functional and
non-functional characteristics of the class of ERP
information systems [10] are analyzed as this
class of information systems best fits the application
domain of BAB.

2. The specific business information system in oper-
ation is declared a reference information system
and analyzed to collect knowledge about specific
functional and non-functional characteristics
and implementation technologies.

3. Additional information is collected from users
of the reference information system through
informal interviews and daily communications to
gather additional knowledge about their habits
and preferences.

Based on the first two steps of the used approach, a
conclusion was drawn that, from the aspect of the busi-
ness architecture of the specific information system,
the appropriate basis for an abstract model would be
a variant of the ERP system adapted to the specifics of
the company's operations, i.e., that the BAB framework
should enable the accelerated development of a custom-
ized ERP system in which some standard ERP function-
alities are emphasized, while some of them are reduced
or even eliminated. A component-based [11] and soft-
ware pattern-based [12] approach to software develop-
ment was chosen to enable easy reuse of the logic that
is encapsulated in components and the description of
a system functioning through orchestration. Based on
the aforementioned conclusions, an abstract component
model of the BAB framework was created, the description
of which follows.

The components and their relations are maintained
through the component called View which is the highest
level of abstraction in BAB. A lower level of abstraction
is the component used to tabulate and manipulate any
descendants of the abstract ancestor. It also defines the
conceptual deletion functionality with the condition that
the object is free and additional conditions that can be
defined as needed. As users are used to tabular display
and manipulation of data through windows, the decision
was made to implement the user interface through these
components. In doing so, the basic operations are input,
modification, and deletion of data, conditional transfor-
mation of data, and creation of "many-to-many" links.
There are three more aspects of object manipulation,
input/modification, and data transformation; this includes
report generation as the most common use case. There-
fore, we need three components for their realization.
Firstly, we have defined placeholders for the insertion
of additional logic at all functionally important points
such as saving data before and after events. For the sake
of handling sensitive data and security, operator roles
are defined. Each abstract page defines a set of roles that
a user must possess to be considered an administrator.
Accordingly, the component will adjust and show/hide
parts of the interface. In the main component that
represents the application shell, a set of pages that the
user can access is assigned to roles. The intersection
of these two sets provides a conceptual solution to the
problem of access rights for users from different sectors
using the same data, which is the case with shared
facilities. For example, the facility vehicle is important
to users from the maintenance sector, the sales and support
sector, and management.

http://sinteza.singidunum.ac.rs

78
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Once we have defined the operators, we can cre-
ate a component that will be bound to the user session
and will take care of the identity and specific settings
for each user individually, such as theme color, sounds,
a predefined printer, important dates, etc. To enable
synchronization of data between multiple sessions of
a single user and between sessions of all users, event-
handling components using the Observer pattern were
deployed [13]. We have two components, one for user-
related events and another for system events. We get
the concrete event type by expanding the abstract event,
which will be processed by type and additional infor-
mation. We do concrete processing in the shell. Work-
ing with e-mail and printing is separated into detached
components that can be included as needed. The table
component includes a component with segments to run
all additional functionality and optionally display addi-
tional information. To avoid formatting data individu-
ally for each column in the table, based on the data type,
the table itself chooses the format. By using the same
principle, we can generate a row in the header with fields
for filtering data. The field type is directly determined
by the data type. The table is joined by a data structure
that stores the entered filtering and sorting parameters,
which represents the interface between the user interface
and the business logic. The initial layouts of the columns
and their names are defined for each table and these
names must match the description in the middle layer
that supplies data from the database. An abstract type
data collection and a condition description structure are
all we need to connect these two layers. Based on this
data, we can "on the fly" form queries to the database.
An essential component for a system operation is also a
component that will independently activate some pro-
cesses under certain conditions. They are mostly timely
conditioned.

Some of the examples of functions that are activated
at a certain time, with the desired frequency of repetition,
are sending an email notification of an employee's
absence, updating, creating, and sending a report on the
employment of employees, creating orders for minimum
quantities for stock replenishment, etc.

3. BAB FRAMEWORK ARCHITECTURE

The BAB framework itself is, in essence, a business
information system design pattern. It was created using
an object-oriented approach and object-oriented design
patterns for modeling the structure and behavior (Singleton,
Builder, Template, Observer, Dependency Injection,
Facade), and a functional programming approach used
solely for the business logic. The basic structure of the
BAB framework follows the EJB architecture [[14], [15],
[16], [17]] shown in Figure 1 consists of three standard
layers (presentation, business layer, and data management)
where the presentation layer consists of two layers
(client layer and web layer), which makes a total of 5
layers:

1. Database Layer (Database Layer) – the concrete
database in which we store data.

2. Persistence Layer - JPA (Java Persistence API)
annotated classes that describe the database
structure and the JPA reference implementation
of Hibernate. Business Logic Layer - Stateless EJB
(Enterprise Java Bean) beans.

3. Web Layer (Web Layer) – A web container that
houses servlets and the server part of the Vaadin
Flow framework [18].

4. Client Layer (Client Layer) – Browser that contains
Vaadin Flow, the client part of the Vaadin frame-
work [19] and web components.

Figure 1 - EJB architecture.

http://sinteza.singidunum.ac.rs

79
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

3.1. PERSISTENCE LAYER

All objects of the process persistence layer are treated
as objects with a common ancestor that determines their
primary identity in the system. This ancestor object
allows solving the following tasks: comparing two
objects, forming sets of objects for presentation purposes,
ensuring the uniqueness of objects in collections, sorting
objects, and locking during concurrent modification of
the object. All other common features and function-
alities are formulated through interfaces. In this way,
multiple inheritance is avoided, which simplifies the
description of business logic without the burden that
additional types would introduce in the utilization of
the functional approach. As we work with SQL data-
bases, the basic functionality to be implemented is to
mark each row in the database with an artificial key that
can be used later to sort the data; newer data will have
a higher key value. The data type for the key, field ID, is
Long, auto-increment, or identity, as MSSQL calls it. It
allows for quick search and comparison, and prevents a
user from causing an error because the database system
itself takes care of the values. One can use it to calculate
the hash value of objects, which is very important
because all relations "to more" are realized with the help
of the HashSet structure, which depends on the hash
value. Another piece of data that each row must con-
tain is the Version field, which is used for optimistic
row locking necessary to support multi-user work. The
implementation of the equals method, which is used to
compare two objects, can already be implemented here
(two objects are considered the same only if they are of
the same type and have the same ID). These function-
alities are described in the AbstractEntity abstract
class. The equals and hashCode methods are essential
for establishing relationships between objects and rep-
resent the basis of the entire framework. Specific cases
that may occur in individual classes are described using
interfaces. The selection of functionalities described by
the interfaces derives from the most common use cases.
It is expected that we will have a class of objects that will
be bound to sessions and represent subjects that interact
with the system. These objects must have fields for user-
name, e-mail, and password. Many objects are described
with a name that should be unique, or with numerical
data. The same is true for natural keys, such as a serial
number. With more sensitive objects, it is important to
know when they were made and who preserved them.
Much additional information can be introduced here
like the arrival date and receiver of the original for the
paper documents, approval and log of the changes made

for financial documents, etc. A large part of the data we
enter in the system will not be allowed to be deleted due
to the referential integrity of the database and should be
able to be marked as inactive. If a more complex pattern
needs to be derived, it can be done by inheriting the
AbstractEntity class. An example is the Item class.
All items should have information about the manufac-
turer, an item from the corresponding codebook, the
location where they are temporarily in the warehouse, a
link to the items in the incoming and outgoing invoices, etc.

3.2. BUSINESS LOGIC

All business logic will be encapsulated in EJB objects
that are stateless by nature. To use AbstractEntity,
all the common functions that we can work with will
be defined in the AbstractHome class. These include
methods for storing, retrieving, modifying, deleting, and
filtering objects. Specific functionalities will be imple-
mented in concrete classes and defined in interfaces.
An example is a class that manages users and requires
an additional functionality to check the correctness of
the entered logging data. The means to represent
the conditions set by the user when filtering will be
described in the next chapter, in the QueryMetaData
class. For business logic, we force the functional pro-
gramming paradigm to the greatest extent possible. The
data is read from the database, then further transformed,
and forwarded using the Stream API. Complex func-
tionalities should be realized by composing functions
that are considered atomic from the point of view of
business logic.

3.3. WEB CONTAINER

The user interface (UI) configuration will be defined
on this layer. Business systems rely heavily on a tabu-
lar display of data followed by windows for entering,
modifying, and displaying details. Based on this, we
can define a GenericTable that will contain rules for
printing and formatting data based on a data type. One
should be able to automatically generate filtering fields
for each column. All this data is temporarily stored in
the QueryMetaData data structure, based on which
SQL queries are generated on the fly. For each column,
it is necessary to define the name of the attribute in the
JPA class, the name in the table, and the name in the
DTO (Data Transfer Object) object that will serve the
exchange of the data between the business layer and the
Web layer. DTO is convenient because it allows us to

http://sinteza.singidunum.ac.rs

80
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

perform additional transformations and ignore the
relationships between objects and represent them using
one or more attributes that carry user-relevant infor-
mation. So, if we have a DTO for a city, we can replace
the connection with the state with an ordinary String
field in which we will write only the name of the state.
The initial layout and visibility of the columns should be
defined in the annotation and the changes made by the
user will be stored in the database. It is common to have
a view table accompanied by input and edit windows
that we can represent with a single two-state object be-
cause the set of edit fields is almost always a subset of the
set of input fields. The field type depends on the attribute
type in the entity class. An important part is the valida-
tion of the entered data. We can create validators for
each specific use case and just bind them to the compo-
nent. A typical example is a name validator that checks
the uniqueness of the entered string. To make it uni-
versal, we will represent the object we are checking and
the service with corresponding interfaces. In this generic
window, one can also define some processes that need
to be automated, such as recording the entry date and
logged-in user, when the created object implements the
interface that defines this functionality. Another exam-
ple is setting focus on the first input field from the top.
A generic table and a generic window can be grouped
under the GenericView class, which represents a typical
web page. Below the table will be a section for additional
information such as the number of items in the table,
and a section for input, edit, and delete buttons, and ad-
ditional multi-purpose buttons. What follows is about
resolving privileges and deleting an item from the table.
Deletion should be possible if the user has the appropri-
ate privileges and if the object has no relation to other
objects of the multi-type. We can solve this by reflection.
Additional conditions that need to be fulfilled in some
cases or branching effects can be defined by redefining
empty methods, hook methods, which are called before
and after essential operations. Another type of input
window we need is for manipulating many-to-many
links. We will implement them through two tables. One
will represent a set of all possible, free objects, and the
other the assembly of the elect. The standard functions
we will have represent the transfer of one/all objects be-
tween these tables with the possibility of defining valida-
tion steps and additional functionalities. The third type
is windows for data manipulation and transformation
where one can describe, for example, the generation
of reports, the loading of XML files, and their process-
ing. What is still needed is to define actions in detail for
each row of the table. It can be a simple dialog, an object

whose class inherits one of the two types of generic win-
dows, a button to jump to a related table where filter-
ing should be done immediately or a component that
displays textual details if the text is longer and it does
not make sense to display it in a table in completely.
All those functionalities are implemented through the
annotations that the corresponding view will contain.
For the application to work like classic applications, it is
necessary to refresh the tables for all users who view the
same table on which someone made a change. This will
be done by using the Observer pattern [13] with the help
of the appropriate event type.

4. EVALUATION OF THE BAB FRAMEWORK

We need a pre-arranged set of classes that inherit
from the frame classes to build each view. We need a
class for mapping data to a base table that inherits the
AbstractEntity class, denoted further on by the
generic type T. Based on it and the data we want to
display to the end user, we need to define a DTO object
that will inherit the AbstractDTO class denoted by
type D, which depends on T. Next is the class (generic
type V) that will encapsulate the business logic and ma-
nipulation of objects in the database. This class inherits
AbstractHome, which depends on T and D. The class
of the concrete view inherits GenericView and depends
on T, V, D and K which represents type of end user.
In the same way, we define the class which defines the
entry/modification window also dependent on T, V, D
and K.

In the example of an information system that was
built with the help of the BAB framework, one task is
to define items. By item, we mean any material good or
service that a company can buy, store, and/or sell.
Accordingly, the basic requirements were that it should
be possible for any item to enter and/or leave the com-
pany through the appropriate type of document. There-
fore, the codebook for items should be defined, and the
connection of the item with the organizational unit of
the warehouse where it is physically located. The addi-
tional requirement arose from the structure of the legacy
application as it was at the time since there were tables
representing the items that needed to be brought under
the new structure. The natural solution was to gener-
ate a new abstract class structure that is lower than
AbstractEntity, yet higher than any individual item
class. In this way, we can check the record structure at
the level of restrictions that are written in the model
classes, as has been done so far; we will still have one class

http://sinteza.singidunum.ac.rs

81
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

to one table mapping as described by the "merged table"
strategy. Another option would be to use a "single table"
strategy. These strategies are standardized by the JPA
specification (Team, 2020). We make the form from two
model classes, Artikal (Eng. Item) and ArtikalIn-
fo, an abstract item, and the corresponding codebook.
Next, we have their projections, where we will change
the lower limit of the generic from AbstractEntity
to Artikal or ArtikalInfo. According to the ex-
isting form, as before, we define the service for code
books and items, also lowering the level of abstraction.
We also define the view for code books as before with
the same changes. A big extension of the form comes
with the view, which will be the basis for all items.
Instead of the previous four types, T, V, D and K, we will
have 8 types: ArtikliView<T extends Artikal, V
extends AbstractArtikalHome<T, D>, D extends

AbstractArtikliDTO<T>, X extends ArtikalInfo,
Y extends AbstractArtikalInfoHome<X, Z>, Z ex-
tends AbstractArtikalInfoiDTO<X>, E extends
Enum<?>, K extends AbstractEntity & Operater-
EntityInterface> extends GenericView<T, V, D,
K>. As one can see, for each item, three additional types
related to the codebook plus one that will be related
to the item type should be defined. In this way, we can
implement common functionality and checks in one
place. Because of this, one can even define the design of
the window for input/modification of items once and
subsequently add specific fields in specific classes. The
graphic representation of the extended pattern is given
in Figure 2.

Using the extended pattern, we can derive a set of
classes for the Vozilo entity entry as shown in Figure 3.

Figure 2 - Example - Arikal Entity.

Figure 3 - Class diagram for the Vozilo entity.

http://sinteza.singidunum.ac.rs

82
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

5. SOFTWARE ARCHITECTURE OF THE BAB
FRAMEWORK

The implementation technologies of the BAB frame-
work were chosen so that the application meets the fol-
lowing requirements: internet capability with support
for various terminal devices, portability, robustness and
stability, easier development, and economy in produc-
tion. The requirement of internet capabilities imposed
the decision to implement a web application, and the
requirement of the economy in production dictated the
choice of open-source technologies. The programming
language Java and the JAKARTA EE set of specifica-
tions for the development of business applications in
Java [17], was used as the basic language. The reasons for
this choice are stability and widespread, speed, available
libraries, and portability. The relational database (here
the MSSQL database) and JPA specification were chosen
for persistence implementation due to the dominance
of relational databases and the advantages JPA has over
other persistence mechanisms. For the sake of easier
development and "smoother" integration of layers, the
Vaadin platform ([18], [19]) is used for the front end.
Figure 4 [19] shows the generic framework for using
web components in the Java environment.

This enables the description of the structure and
functionality of web pages (HTML, CSS, JavaScript)
in the Java programming language with the use of web
components. The disadvantage that Vaadin potential-
ly has as a server technology is related to the limited
number of competing users. However, the study https://
vaadin.com/vaadin-scalability-report reports the perfor-
mance which is quite acceptable for midsize business
systems. Conforming to Servlet API technologies allows
the use of any application server that supports Servlet
technology. In this specific case, the WildFly (formerly
JBoss) server, a Red Hat open-source distribution, is
used [20]. Hibernate was chosen as the ORM mapper
due to its stability, large user base, and continuous
development, as well as compliance with the JPA speci-
fication. Additional libraries for working with Excel, and
XML files are from the Apache Foundation, while the
JasperReports tool is chosen for report generation.

Figure 4 - Usage of web components.

http://sinteza.singidunum.ac.rs

83
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

6. CONCLUDING CONSIDERATIONS

BAB Framework is a software pattern that aims to
accelerate the development of business information sys-
tems. It is based on an object-oriented approach and the
design pattern concept. The BAB model is implemented
using the Java programming language and the Jakarta
EE, with functional programming in the business logic
layer. The proposed solution is continuously evaluated
by developing and maintaining the operative business
information system of medium complexity. The results
show that BAB Framework significantly accelerated the
development process, reduced the workload and fatigue
of programmers, improved code readability, and facili-
tated testing. One of the main BAB framework’s defi-
ciencies is the steep learning curve for programmers, as
they must remember many conventions to describe the
structure and functionality of the system. A domain-
specific language, a code generator, and a graphical
UML-based tool are under development to address the
issue. Another deficiency is the significant effort needed
to configure the infrastructure (operating system, data-
base, and web servers), which can be time-consuming
and/or require the commitment of specialized person-
nel. Container technology, like Docker, is envisioned to
simplify configuration and ensure continuous delivery.
Apart from the above-mentioned issues that are obvi-
ous and require short-term resolution, there is plenty of
space for substantial improvement of the BAB Frame-
work. Meta modeling enhanced with appropriate AI
techniques (i.e., semantic technologies for semantic
coupling and co-change of software components [21],
explainable AI for defect prediction models [22], large
language models [23] for automated models and/or
code generation, and alike) is the road that should be
hit in the future to improve substantially of the BAB
Framework.

7. REFERENCES

[1] Y. Bakos, "The emerging role of electronic market-
places on the Internet," Communicatons of the ACM,
vol. 41, no. 802, pp. 35 - 42, 1998.

[2] Y. Bakos and H. Halaburda, "Overcoming the coor-
dination problem in new marketplaces via crypto-
graphic tokens," Information Systems Research, vol.
33, no. 4, pp. 1368-1385, 2022.

[3] T. F. Pereira, A. Matta, C. M. Mayeaa, F. Pereira, N.
Monroy, J. Jorge, T. Rosa, C. E. Salgado, A. Lima,
J. Ricardo, R. J. Machado, L. Magalhães, T. Adão,
M. A. G. López and D. G. Gonzalez, "A web-based
Voice Interaction framework proposal for enhancing
Information Systems user experience," Procedia
Computer Science, pp. 235-244, 2022.

[4] K. D. Schewe and B. Thalheim, Design and Devel-
opment of Web Informaton Systems, Berlin - Hei-
delberg: Springer Verlag, 2019.

[5] N. Ali and R. Lai, "A method of requirements
change management for global software develop-
ment," Information and Software Technology, vol.
70, pp. 49-67, 2016.

[6] J. Stine, Design, Build, Ship: Faster, Safer Software
Delivery, Oreilly & Associates Inc, 2021.

[7] S. Alter, "Defining information systems as work sys-
tems: implications for the IS field," European Journal
of Information Systems, pp. 448-469, 2008.

[8] K. E. Pearlson, C. S. Saunders and D. F. Galleta,
Managing and Using Information Systems: A Stra-
tegic Approach, Hoboken: Wiley, 2019.

[9] S. Haag, M. Cummings and M. D. J., Management
Information Systems for the Information Age, New
York: McGraw-Hill, 2002.

[10] E. Monk and B. Wagner, Concepts in Enterprise
Resource Planning 4th Edition, Boston: Cengage
Learning, 2012.

[11] K. Whitehead, Component Based Development:
Principles and Planning for Business Systems, Bos-
ton: Addison-Wesley, 2002.

[12] M. Fowler, Patterns of Enterprise Application Ar-
chitecture, Boston: Addison-Wesley, 2002.

[13] S. J. Metsker and W. C. Wake, Design Paterns in
Java(TM) (Software Paterns Series), Boston: Addi-
son-Wesley Professional, 2006.

[14] M. Sikora, EJB 3 Developer Guide: A Practical
Guide for developers and architects to the Enter-
prise Java Beans Standard, Birmingham: Packt Pub-
lishing, 2008.

[15] Oracle Corporation, "Enterprise JavaBeans (EJBs),"
Oracle Corporation, Austin, 2022.

[16] Oracle Corporation, "Kodo™ 4.2.0 Developers Guide
for JPA/JDO," Oracle Corporation, Austin, 2015.

http://sinteza.singidunum.ac.rs

84
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

[17] Jakarta Persistence Team, "JAKARTA EE Jakarta
Persistence," Eclipse Foundation, Ottawa, 2020.

[18] Vaadin Ltd, "Develop Web Apps in Java," Vaadin
Ltd, 2023.

[19] Vaadin Ltd, "Creating a Flow Application," Vaadin
Ltd, 2023.

[20] L. Stancapiano, Mastering Java EE Development
with WildFly, Birmingham-Mumbai: Packt Pub-
lishing, 2017.

[21] N. Ajienka, A. Capiluppi, and S. Counsell, "An
empirical study on the interplay between semantic
coupling and co-change of software classes," Empirical
Software Engineering, vol. 23, p. 1791–1825, 2018.

[22] C. Tantithamthavorn and J. Jiarpakdee, Explainable
AI for Software Engineering, Monash University,
2021.

[23] S. I. Ross, F. Martnez, S. Houde, M. Muller, and J.
D. Weisz, "The Programmer’s Assistant: Conversa-
tional Interaction with a Large Language Model for
Software Development," in IUI '23: Proceedings of
the 28th International Conference on Intelligent User
Interfaces, Sydney, 2023.

http://sinteza.singidunum.ac.rs

