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Abstract: 
Dataflow architectures offer superior performance compared to control-flow 
architectures under certain conditions. This paper focuses on memory organiza-
tion of a hybrid control-flow and dataflow architecture which guaranties that 
memory allocation can be accomplished in a predictable time. Mapping logical 
addresses into physical ones and accessing local memory in constant time is 
achieved using special address translation hardware. The memory organization 
is based on Buddy-system. It allows allocating arbitrary amounts of memory 
and prefetching data while it is being accessed by control-flow and dataflow 
hardware. 
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INTRODUCTION

Real-time systems are a form of operating systems with a special 
purpose. They are employed when there are strict time constraints for 
job execution. A real-time system is considered to function correctly if 
and only if it returns a correct result respecting precisely defined time 
constraints.

In order to reliably determine the longest program execution time, 
many real-time systems are designed in such a manner, so that the memory 
access time is calculated as the time required to retrieve data from the 
main memory, assuming that the data will never be found in the cache 
memory. Some of the solutions involve the use of a cache entry locking 
mechanism. This ensures that the data, once loaded and locked in one 
cache entry to be written by one thread, cannot be changed by another 
thread. Another way to predict the maximal execution time is based on 
memory partitioning. In this case, statically sized partitions at boot time, 
and/or dynamic partitions can be used.
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Under certain circumstances, dataflow architectures 
are capable of executing a higher number of instructions 
per second compared to control-flow architectures [1, 
2]. However, there are a lot of challenges. Programming 
dataflow architectures is considered to be reasonably 
harder compared to programming control-flow archi-
tectures [3]. Despite that, there are a lot of algorithms 
implemented for dataflow architectures [4], as well as 
methods to automate the translation of control-flow 
software into the dataflow [5, 6]. Placing both control-
flow and dataflow components with shared memory at 
the same chip die requires special techniques [7-10], 
while it reduces the lifespan of a chip to the minimum 
lifespan of its components [11]. The applicability of the 
architecture is still being investigated [12]. Scheduling 
the execution of dataflow and control-flow jobs intro-
duces more constraints compared to scheduling for 
control-flow architectures [13]. The granularity of jobs 
for which is justified to utilize dataflow hardware is still 
a research topic [14]. In short, there is a long way from 
an algorithm to the execution on a special chip [15].

This paper examines the allocation and the deallocation 
of memory, as well as local memory access mechanisms 
in hard real-time systems for the purpose of hybrid 
control-flow and dataflow processors. 

2. PROBLEM DEFINITION

The aim of the work is to solve the problem of local 
memory fragmentation and memory access speed, so 
that this kind of memory model can be used in hybrid 
architectures. It is necessary to foresee:

• appropriate structures that store data on free and 
reserved memory blocks, such that an appropri-
ate amount of free memory can be found in a 
predictable and relatively short time interval

• appropriate mechanisms that can access a local 
memory in a predictable time.

In addition to this, it is necessary to provide methods 
by which it is possible to load data into local memory 
before starting a program execution, if this is possible. 
Otherwise, it should be loaded during the execution.

3. EXISTING SOLUTIONS AND THEIR 
ANALYSIS

In recent decades, a lot of work has been done on 
solving the problem of cache memory partitioning in 
the case of multiprocessor systems. Most of the solutions 
represent either techniques for sharing resources by log-
ically dividing cache memories [16-22] or techniques for 
assigning cache memory partitions in the case where a 
system supports private cache memories [23-26]. 
Unfortunately, various techniques introduce problems 
of unfairness [27], so-called trashing [28], and quality of 
service problems [29].

One of the solutions to the aforementioned problems 
is the allocation of cache partitions of requested sizes 
only in certain time intervals [30]. The justification for 
this approach lies in the following fact. If allocating a 
cache partition smaller than the partition size signifi-
cantly reduces the efficiency of the system, the standard 
partition is not suitable. In order to avoid an unfair solu-
tion, in which some threads have the required amount 
of cache memory, while others have significantly less, 
the cache memory can be divided so that each thread 
has the required cache partition size only at certain 
intervals.

Another solution was proposed in the paper [29]. 
The main idea is to partition the set-associative cache, 
so that threads access always the same sets.

In each of the previously described cases, there is still 
the problem of fragmentation or the limitation of the 
amount of local memory that can be allocated to one 
thread. In the case of using fixed-length partitions, the 
problem of internal fragmentation occurs. If one thread 
was allowed to own exactly one partition, this would 
unnecessarily introduce a limit on the amount of memory 
that a thread can possess. If each thread was allowed 
to have a variable number of partitions, keeping an 
appropriate structure that would store data about occu-
pied partitions for each thread would require additional 
memory, as well as the time needed to access this data.

4. ASSUMPTIONS

Before solving the problem of local memory organi-
zation, appropriate assumptions are listed:

-  it is possible to allocate any amount of free memory, 
which implies relatively little internal fragmen-
tation
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-  it is possible to utilize the portion of a memory 
reserved for one thread, while freeing the space 
necessary for another thread

-  it is possible to wait for the reservation of memory 
requested by one thread until the execution of 
another thread is finished, as long as the waiting 
time is predictable so that the use of memory 
blocks can be scheduled.

5. PROPOSED SOLUTION

This paper proposes a solution to the problem based 
on the so-called Buddy System [31] mechanism for stor-
ing data in memory. Figure 1 depicts an example logical 
organization of a reserved memory consisting of multi-
ple blocks, each of them with the size 2n bytes, where n 
is a positive integer number. It goes without saying that 
each request for a certain amount of memory can be 
represented as a sum of requests for reserving memory 
blocks of size 2n, where each block is of a different size.

 
Figure 1 - Modeling a reserved memory as a sum of blocks.

Reserving memory for the requested sequence of 
blocks starts by checking whether the requested amount 
of memory is available in the system. Reserved memory 
consists of a sum of reserved blocks. We can also call 
them requested blocks. Then, for each of the blocks, the 
place in the local memory has to be found or freed. The 
following three cases can occur:

-  there is a free block of the requested size
-  there is a free larger block
-  there is no block of sufficient size, but the total 

amount of free memory is larger than the re-
quested block size.

In the case there is a free block of the requested size, 
one of such blocks must be declared as occupied, and the 
address of the beginning of the newly occupied block is 
written into the resulting vector of the memory reser-
vation function. Otherwise, if a larger free block exists 
than the requested one, that block is divided into smaller 
ones, one of which is declared occupied.

In the case that there is no large enough block avail-
able in the system, but there is enough free space in the 
system, another function is called to move blocks in the 
local memory in such a way that the maximum amount 
of data that may be required to move in order to free 
up space for this block is predictable. First, a block of 
the required size is found, for which the cost of moving 
the occupied portion of data elsewhere is estimated to 
be minimal.

It should be noted that this does not mean that the 
highest percentage of the block is empty. For example, 
moving five blocks of the smallest size may require at 
most five moves of the amount of data of one of the 
smallest blocks. On the other hand, moving a block of 
size equal to four of the smallest blocks may involve 
moving a block of size equal to two smallest blocks, as 
well as moving another block of the smallest size, to 
make room for a block of size equal to four smallest 
blocks. Then it is necessary to move the block for which 
the memory is reserved, i.e. another moving of the size 
equal to four smallest blocks is needed. Moving a block 
of  the size equal to two smallest blocks, it is again nec-
essary to make room for it, which may involve moving 
one block of the smallest size, and then moving a block 
for which the memory is freed, ie. moving the block of 
size equal to two smallest blocks. In the described way, 
it would be necessary to move eight blocks of the small-
est size, which is significantly more than moving five 
smallest blocks. Therefore, the cost of moving five blocks 
of the smallest size could be assigned the number five, 
while the cost of moving a block of size equal to four 
blocks of the smallest size could be assigned the number 
eight.

After finding the block that is found to have the low-
est moving cost, it is necessary to recursively call the 
same function to free space in the local memory for each 
of blocks contained in it by move contained blocks.
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The function for freeing the local memory processes 
the vector passed to the function as an input parameter, 
and is responsible for freeing a memory for each of the 
blocks corresponding to the components of this vector. 
If, by freeing a memory occupied by any of the blocks, it 
is determined that the adjacent block of the same size is 
empty with which it can form a bigger block, it is neces-
sary to declare these two blocks as one single free block 
of twice the size. Again, the resulting bigger free block 
has an empty neighborhood block of the same size, with 
which it can form a bigger block, these two blocks must 
be merged again in order to become one free block. This 
procedure is repeated until the previously described 
condition is not met.

In order to support access to a memory with such 
organization, it was necessary to provide the mechanism 
for mapping generated logical addresses into the physical 
ones. Each thread accesses its local memory as if it was 
a contiguous memory of certain size. Following actions 
need to be performed in order to enable mapping 
generated addresses into physical ones:

• determine which block the data belongs to
• determine the displacement relative to the 

beginning of the block.

Block i, where i is a positive integer, is exactly twice 
the size of block i+1. If the heaviest bit of the generated 
address is set to 1, block 0 is accessed. In this case, the 
remaining bits of the generated address are taken as an 
offset relative to the beginning of that block. 

In the case the bit of the highest weight of the gener-
ated address is set to 0, the next bit is observed. If it is 
set to 1, block 1 is accessed. In that case, the remaining 
bits of the generated address are used to determine the 
displacement. This way, it is determined which block 
needs to be accessed, as well as the offset relative to the 
beginning of that block. In general, the first bit of the 
generated address that is found to be set (equal to 1) 
determines the block address, and the bits to the right 
of this bit represent the offset.

This way, it is possible to transform the generated 
address into the physical address without using an adder,  
that is, only by choosing which bits should be taken 
from the block address, and which bits should be taken 
from the generated address. The process of transforming 
the generated into physical addresses is depicted in 
Figure 2. The block 0 size is equivalent to one half of 
the memory size, and, as such, can be placed either in 
the first half, or in the second half of the memory. 
Therefore, the starting address of the block has only 1 
bit that is important, while other bits are equal to 0, and 
can therefore be ignored (don’t need to be stored). Simi-
larly, block 1 address contains only the first 2 important 
bits, while the rest of the bits are considered to be equal 
to 0. In general, block i address has exactly the first 
i+1 important bits. In order to determine the physical 
address, these important bits are taken from the block 
starting address, while the remaining bits are taken from 
the generated address, as they represent the offset from 
the beginning of the block.

Figure 2 - The process of transforming logical into physical addresses.
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Once the memory has been reserved for a thread, 
it is possible to load the data required by a thread into 
the local memory before the execution of the thread. It 
is also possible to load the data into one of the obtained 
memory blocks, while the remaining blocks have not 
been freed.

6. MEMORY RESERVATION ANALYSIS

In this chapter, an analysis of the proposed solution 
for reserving a memory is given, with the aim of ena-
bling the proper configuration of a system, so that the 
internal fragmentation is as small as possible, as well as 
the time required to provide the required amount of 
data. First, the theorem and the corresponding proof 
are presented.

Theorem 1: In order to provide the space for a block 
whose size is equal to 2n smallest data blocks, it is 
necessary to move, in the worst-case, n*2n-1 smallest data 
blocks.

Proof: First, we can assume that the total amount 
of free memory is always greater than the requested 
amount of memory. Otherwise, reserving the requested 
amount of memory is not possible.

Let us assume that the value of the number n is equal 
to 1, and that the smallest block size is equal to 1 byte.

If we want to provide the space for 21 bytes, it is in 
the worst case necessary to move 1 byte from one place 
in the memory to another. If we set the value of the 
number n to 1 in the formula given in the theorem, we 
get the same result.

By applying mathematical induction, if we assume 
that the formula given in the theorem is correct for 
some arbitrary value of the number n, we can derive 
how many of the smallest data blocks need to be moved 
in the event that the required amount of memory is 2n+1 
bytes.

It is known that it is necessary to move, in the worst 
case, n*2n-1 smallest data blocks, in order to make room 
for 2n data blocks.

In addition to this, in the worst case, it is necessary 
to move another block of the size equal to the size of 2n 
smallest data blocks, in order to provide space for a data 
block of size equal to the size of 2n+1 smallest data blocks.

In order to provide space for 2n data blocks, it is necessary 
to move, in the worst case, n*2n-1 smallest data blocks.

Summing up the necessary moves of the smallest 
data blocks, we obtain the result of Equation 1.

2n+n*2n-1+n*2n-1=2n+n*2n=(n+1)*2n            (1)

Equation 1 - Number of blocks needed to be moved  
in the worst case.

As we have shown that the theorem is true in the 
case the value of the number n is set to 1, and then, starting 
from the assumption that it is true for some value of the 
number n, that it is also true for the value n+1, it has 
been proven that the theorem is true.

Therefore, the size of the smallest block should be 
chosen, so that the system has the best performance. 
The optimal value of the size of the smallest block can 
be determined empirically, having in mind the internal 
fragmentation and the control logic needed for handling 
addresses of blocks.

7. RESULTS

By analyzing the proposed solution, it was deter-
mined that, in order to provide contiguous space for the 
2n smallest data blocks, in the worst case n*2n-1 smallest 
data blocks must be moved. The simulator implemented 
in the programming language C++ enables monitoring 
of block movement when freeing local memory. The 
simulation results confirm that the number of necessary 
moves of smallest blocks cannot exceed the value given in 
a Theorem 1. As an example, a system was implemented 
for which the ratio of the number of bytes that need to be 
moved and the required amount of local memory in the 
worst case is four, which corresponds to the value of the 
number n set to eight in the formula. It should be noted 
that this factor is proportional to the number n.

8. CONCLUSION

By analyzing amounts of memory and hardware 
resources needed to store data structures intended for 
data access and implement data access in hardware, as 
well as by comparing the data access times, from all the 
analyzed systems, the Buddy System was chosen due to 
the deterministic time needed for memory allocation 
and its simplicity. Appropriate C++ simulator was im-
plemented, proving the validity of theoretical analysis.

Bearing in mind that the time required to access 
the main memory of a computer is far greater than the 
time required to access the local memory (e.g. cache or 
scratchpad), it can be considered that the proposed solu-
tion effectively solves the problem of fragmentation and 
enables sharing the local memory between control-flow 
and dataflow hardware.
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Further research directions relate to determining the 
optimal relationship between the minimal block size and 
the amount of memory that can be reserved, so that the 
access hardware is relatively small, as well as internal 
fragmentation, while the size of the largest block that 
can be reserved does not limit the execution of high 
performance algorithms.
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