
159

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2023-159-165

Nenad Korolija1*,
Svetlana Štrbac-Savić2,
Borislav Đorđević2

1School of Electrical Engineering,
 University of Belgrade,
 Belgrade, Serbia

2Academy of Technical and Art Applied
 Studies Belgrade,
 Belgrade, Serbia

Correspondence:
Nenad Korolija

e-mail:
nenadko@etf.rs

SCRATCHPAD MEMORY UNIT IN HYBRID CONTROL-FLOW AND
DATAFLOW ARCHITECTURES

Abstract:
Dataflow architectures offer superior performance compared to control-flow
architectures under certain conditions. This paper focuses on memory organiza-
tion of a hybrid control-flow and dataflow architecture which guaranties that
memory allocation can be accomplished in a predictable time. Mapping logical
addresses into physical ones and accessing local memory in constant time is
achieved using special address translation hardware. The memory organization
is based on Buddy-system. It allows allocating arbitrary amounts of memory
and prefetching data while it is being accessed by control-flow and dataflow
hardware.

Keywords:
Dataflow architectures, Control-flow architectures, Scratchpad memory,
Buddy-system.

INTRODUCTION

Real-time systems are a form of operating systems with a special
purpose. They are employed when there are strict time constraints for
job execution. A real-time system is considered to function correctly if
and only if it returns a correct result respecting precisely defined time
constraints.

In order to reliably determine the longest program execution time,
many real-time systems are designed in such a manner, so that the memory
access time is calculated as the time required to retrieve data from the
main memory, assuming that the data will never be found in the cache
memory. Some of the solutions involve the use of a cache entry locking
mechanism. This ensures that the data, once loaded and locked in one
cache entry to be written by one thread, cannot be changed by another
thread. Another way to predict the maximal execution time is based on
memory partitioning. In this case, statically sized partitions at boot time,
and/or dynamic partitions can be used.

ADVANCED TECHNOLOGIES AND APPLICATIONS SESSION
INVITED PAPER

http://sinteza.singidunum.ac.rs
https://doi.org/10.15308/Sinteza-2023-159-165

Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Technologies and
Applications Session

160

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Under certain circumstances, dataflow architectures
are capable of executing a higher number of instructions
per second compared to control-flow architectures [1,
2]. However, there are a lot of challenges. Programming
dataflow architectures is considered to be reasonably
harder compared to programming control-flow archi-
tectures [3]. Despite that, there are a lot of algorithms
implemented for dataflow architectures [4], as well as
methods to automate the translation of control-flow
software into the dataflow [5, 6]. Placing both control-
flow and dataflow components with shared memory at
the same chip die requires special techniques [7-10],
while it reduces the lifespan of a chip to the minimum
lifespan of its components [11]. The applicability of the
architecture is still being investigated [12]. Scheduling
the execution of dataflow and control-flow jobs intro-
duces more constraints compared to scheduling for
control-flow architectures [13]. The granularity of jobs
for which is justified to utilize dataflow hardware is still
a research topic [14]. In short, there is a long way from
an algorithm to the execution on a special chip [15].

This paper examines the allocation and the deallocation
of memory, as well as local memory access mechanisms
in hard real-time systems for the purpose of hybrid
control-flow and dataflow processors.

2. PROBLEM DEFINITION

The aim of the work is to solve the problem of local
memory fragmentation and memory access speed, so
that this kind of memory model can be used in hybrid
architectures. It is necessary to foresee:

• appropriate structures that store data on free and
reserved memory blocks, such that an appropri-
ate amount of free memory can be found in a
predictable and relatively short time interval

• appropriate mechanisms that can access a local
memory in a predictable time.

In addition to this, it is necessary to provide methods
by which it is possible to load data into local memory
before starting a program execution, if this is possible.
Otherwise, it should be loaded during the execution.

3. EXISTING SOLUTIONS AND THEIR
ANALYSIS

In recent decades, a lot of work has been done on
solving the problem of cache memory partitioning in
the case of multiprocessor systems. Most of the solutions
represent either techniques for sharing resources by log-
ically dividing cache memories [16-22] or techniques for
assigning cache memory partitions in the case where a
system supports private cache memories [23-26].
Unfortunately, various techniques introduce problems
of unfairness [27], so-called trashing [28], and quality of
service problems [29].

One of the solutions to the aforementioned problems
is the allocation of cache partitions of requested sizes
only in certain time intervals [30]. The justification for
this approach lies in the following fact. If allocating a
cache partition smaller than the partition size signifi-
cantly reduces the efficiency of the system, the standard
partition is not suitable. In order to avoid an unfair solu-
tion, in which some threads have the required amount
of cache memory, while others have significantly less,
the cache memory can be divided so that each thread
has the required cache partition size only at certain
intervals.

Another solution was proposed in the paper [29].
The main idea is to partition the set-associative cache,
so that threads access always the same sets.

In each of the previously described cases, there is still
the problem of fragmentation or the limitation of the
amount of local memory that can be allocated to one
thread. In the case of using fixed-length partitions, the
problem of internal fragmentation occurs. If one thread
was allowed to own exactly one partition, this would
unnecessarily introduce a limit on the amount of memory
that a thread can possess. If each thread was allowed
to have a variable number of partitions, keeping an
appropriate structure that would store data about occu-
pied partitions for each thread would require additional
memory, as well as the time needed to access this data.

4. ASSUMPTIONS

Before solving the problem of local memory organi-
zation, appropriate assumptions are listed:

- it is possible to allocate any amount of free memory,
which implies relatively little internal fragmen-
tation

http://sinteza.singidunum.ac.rs

Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Technologies and
Applications Session

161

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

- it is possible to utilize the portion of a memory
reserved for one thread, while freeing the space
necessary for another thread

- it is possible to wait for the reservation of memory
requested by one thread until the execution of
another thread is finished, as long as the waiting
time is predictable so that the use of memory
blocks can be scheduled.

5. PROPOSED SOLUTION

This paper proposes a solution to the problem based
on the so-called Buddy System [31] mechanism for stor-
ing data in memory. Figure 1 depicts an example logical
organization of a reserved memory consisting of multi-
ple blocks, each of them with the size 2n bytes, where n
is a positive integer number. It goes without saying that
each request for a certain amount of memory can be
represented as a sum of requests for reserving memory
blocks of size 2n, where each block is of a different size.

Figure 1 - Modeling a reserved memory as a sum of blocks.

Reserving memory for the requested sequence of
blocks starts by checking whether the requested amount
of memory is available in the system. Reserved memory
consists of a sum of reserved blocks. We can also call
them requested blocks. Then, for each of the blocks, the
place in the local memory has to be found or freed. The
following three cases can occur:

- there is a free block of the requested size
- there is a free larger block
- there is no block of sufficient size, but the total

amount of free memory is larger than the re-
quested block size.

In the case there is a free block of the requested size,
one of such blocks must be declared as occupied, and the
address of the beginning of the newly occupied block is
written into the resulting vector of the memory reser-
vation function. Otherwise, if a larger free block exists
than the requested one, that block is divided into smaller
ones, one of which is declared occupied.

In the case that there is no large enough block avail-
able in the system, but there is enough free space in the
system, another function is called to move blocks in the
local memory in such a way that the maximum amount
of data that may be required to move in order to free
up space for this block is predictable. First, a block of
the required size is found, for which the cost of moving
the occupied portion of data elsewhere is estimated to
be minimal.

It should be noted that this does not mean that the
highest percentage of the block is empty. For example,
moving five blocks of the smallest size may require at
most five moves of the amount of data of one of the
smallest blocks. On the other hand, moving a block of
size equal to four of the smallest blocks may involve
moving a block of size equal to two smallest blocks, as
well as moving another block of the smallest size, to
make room for a block of size equal to four smallest
blocks. Then it is necessary to move the block for which
the memory is reserved, i.e. another moving of the size
equal to four smallest blocks is needed. Moving a block
of the size equal to two smallest blocks, it is again nec-
essary to make room for it, which may involve moving
one block of the smallest size, and then moving a block
for which the memory is freed, ie. moving the block of
size equal to two smallest blocks. In the described way,
it would be necessary to move eight blocks of the small-
est size, which is significantly more than moving five
smallest blocks. Therefore, the cost of moving five blocks
of the smallest size could be assigned the number five,
while the cost of moving a block of size equal to four
blocks of the smallest size could be assigned the number
eight.

After finding the block that is found to have the low-
est moving cost, it is necessary to recursively call the
same function to free space in the local memory for each
of blocks contained in it by move contained blocks.

http://sinteza.singidunum.ac.rs

Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Technologies and
Applications Session

162

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

The function for freeing the local memory processes
the vector passed to the function as an input parameter,
and is responsible for freeing a memory for each of the
blocks corresponding to the components of this vector.
If, by freeing a memory occupied by any of the blocks, it
is determined that the adjacent block of the same size is
empty with which it can form a bigger block, it is neces-
sary to declare these two blocks as one single free block
of twice the size. Again, the resulting bigger free block
has an empty neighborhood block of the same size, with
which it can form a bigger block, these two blocks must
be merged again in order to become one free block. This
procedure is repeated until the previously described
condition is not met.

In order to support access to a memory with such
organization, it was necessary to provide the mechanism
for mapping generated logical addresses into the physical
ones. Each thread accesses its local memory as if it was
a contiguous memory of certain size. Following actions
need to be performed in order to enable mapping
generated addresses into physical ones:

• determine which block the data belongs to
• determine the displacement relative to the

beginning of the block.

Block i, where i is a positive integer, is exactly twice
the size of block i+1. If the heaviest bit of the generated
address is set to 1, block 0 is accessed. In this case, the
remaining bits of the generated address are taken as an
offset relative to the beginning of that block.

In the case the bit of the highest weight of the gener-
ated address is set to 0, the next bit is observed. If it is
set to 1, block 1 is accessed. In that case, the remaining
bits of the generated address are used to determine the
displacement. This way, it is determined which block
needs to be accessed, as well as the offset relative to the
beginning of that block. In general, the first bit of the
generated address that is found to be set (equal to 1)
determines the block address, and the bits to the right
of this bit represent the offset.

This way, it is possible to transform the generated
address into the physical address without using an adder,
that is, only by choosing which bits should be taken
from the block address, and which bits should be taken
from the generated address. The process of transforming
the generated into physical addresses is depicted in
Figure 2. The block 0 size is equivalent to one half of
the memory size, and, as such, can be placed either in
the first half, or in the second half of the memory.
Therefore, the starting address of the block has only 1
bit that is important, while other bits are equal to 0, and
can therefore be ignored (don’t need to be stored). Simi-
larly, block 1 address contains only the first 2 important
bits, while the rest of the bits are considered to be equal
to 0. In general, block i address has exactly the first
i+1 important bits. In order to determine the physical
address, these important bits are taken from the block
starting address, while the remaining bits are taken from
the generated address, as they represent the offset from
the beginning of the block.

Figure 2 - The process of transforming logical into physical addresses.

http://sinteza.singidunum.ac.rs

Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Technologies and
Applications Session

163

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Once the memory has been reserved for a thread,
it is possible to load the data required by a thread into
the local memory before the execution of the thread. It
is also possible to load the data into one of the obtained
memory blocks, while the remaining blocks have not
been freed.

6. MEMORY RESERVATION ANALYSIS

In this chapter, an analysis of the proposed solution
for reserving a memory is given, with the aim of ena-
bling the proper configuration of a system, so that the
internal fragmentation is as small as possible, as well as
the time required to provide the required amount of
data. First, the theorem and the corresponding proof
are presented.

Theorem 1: In order to provide the space for a block
whose size is equal to 2n smallest data blocks, it is
necessary to move, in the worst-case, n*2n-1 smallest data
blocks.

Proof: First, we can assume that the total amount
of free memory is always greater than the requested
amount of memory. Otherwise, reserving the requested
amount of memory is not possible.

Let us assume that the value of the number n is equal
to 1, and that the smallest block size is equal to 1 byte.

If we want to provide the space for 21 bytes, it is in
the worst case necessary to move 1 byte from one place
in the memory to another. If we set the value of the
number n to 1 in the formula given in the theorem, we
get the same result.

By applying mathematical induction, if we assume
that the formula given in the theorem is correct for
some arbitrary value of the number n, we can derive
how many of the smallest data blocks need to be moved
in the event that the required amount of memory is 2n+1
bytes.

It is known that it is necessary to move, in the worst
case, n*2n-1 smallest data blocks, in order to make room
for 2n data blocks.

In addition to this, in the worst case, it is necessary
to move another block of the size equal to the size of 2n
smallest data blocks, in order to provide space for a data
block of size equal to the size of 2n+1 smallest data blocks.

In order to provide space for 2n data blocks, it is necessary
to move, in the worst case, n*2n-1 smallest data blocks.

Summing up the necessary moves of the smallest
data blocks, we obtain the result of Equation 1.

2n+n*2n-1+n*2n-1=2n+n*2n=(n+1)*2n (1)

Equation 1 - Number of blocks needed to be moved
in the worst case.

As we have shown that the theorem is true in the
case the value of the number n is set to 1, and then, starting
from the assumption that it is true for some value of the
number n, that it is also true for the value n+1, it has
been proven that the theorem is true.

Therefore, the size of the smallest block should be
chosen, so that the system has the best performance.
The optimal value of the size of the smallest block can
be determined empirically, having in mind the internal
fragmentation and the control logic needed for handling
addresses of blocks.

7. RESULTS

By analyzing the proposed solution, it was deter-
mined that, in order to provide contiguous space for the
2n smallest data blocks, in the worst case n*2n-1 smallest
data blocks must be moved. The simulator implemented
in the programming language C++ enables monitoring
of block movement when freeing local memory. The
simulation results confirm that the number of necessary
moves of smallest blocks cannot exceed the value given in
a Theorem 1. As an example, a system was implemented
for which the ratio of the number of bytes that need to be
moved and the required amount of local memory in the
worst case is four, which corresponds to the value of the
number n set to eight in the formula. It should be noted
that this factor is proportional to the number n.

8. CONCLUSION

By analyzing amounts of memory and hardware
resources needed to store data structures intended for
data access and implement data access in hardware, as
well as by comparing the data access times, from all the
analyzed systems, the Buddy System was chosen due to
the deterministic time needed for memory allocation
and its simplicity. Appropriate C++ simulator was im-
plemented, proving the validity of theoretical analysis.

Bearing in mind that the time required to access
the main memory of a computer is far greater than the
time required to access the local memory (e.g. cache or
scratchpad), it can be considered that the proposed solu-
tion effectively solves the problem of fragmentation and
enables sharing the local memory between control-flow
and dataflow hardware.

http://sinteza.singidunum.ac.rs

Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Technologies and
Applications Session

164

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Further research directions relate to determining the
optimal relationship between the minimal block size and
the amount of memory that can be reserved, so that the
access hardware is relatively small, as well as internal
fragmentation, while the size of the largest block that
can be reserved does not limit the execution of high
performance algorithms.

9. REFERENCES

[1] R. Trobec, R. Vasiljević, M. Tomašević, V.
Milutinović, R. Beivide, and M. Valero, ”Intercon-
nection networks in petascale computer systems: A
survey,” ACM Computing Surveys (CSUR), vol. 49,
no. 3, pp. 1-24, 2016.

[2] V. Milutinović, B. Furht, Z. Obradović, and N.
Korolija, “Advances in high performance computing
and related issues,” Mathematical problems in
engineering, 2016.

[3] J. Popovic, D. Bojic, and N. Korolija, “Analysis of
task effort estimation accuracy based on use case
point size,” IET Software, vol. 9, no. 6, pp. 166-173,
2015.

[4] N. Trifunovic, V. Milutinovic, N. Korolija, and G.
Gaydadjiev, “An AppGallery for dataflow computing,”
Journal of Big Data, vol. 3, pp. 1-30, 2016.

[5] V. Milutinovic, J. Salom, D. Veljovic, N. Korolija,
D. Markovic, L. Petrovic, ... and L. Petrovic, “Trans-
forming applications from the control flow to the
dataflow paradigm,” DataFlow Supercomputing
Essentials: Research, Development and Education,
pp. 107-129, 2017.

[6] V. Milutinović, N. Trifunović, N. Korolija, J.
Popović, and D. Bojić, “Accelerating program
execution using hybrid control flow and dataflow
architectures,” In 2017 25th Telecommunication
Forum (TELFOR), IEEE, pp. 1-4, November 2017.

[7] V. Milutinović, E. S. Azer, K. Yoshimoto, G.
Klimeck, M. Djordjevic, M. Kotlar, ... and I. Ratkovic,
“The ultimate dataflow for ultimate supercom-
puters-on-a-chip,” for scientific computing, geo
physics, complex mathematics, and information
processing, In 2021 10th Mediterranean Conference
on Embedded Computing (MECO), IEEE, pp. 1-6,
June 2021.

[8] V. Milutinović, M. Kotlar, I. Ratković, N. Korolija,
M. Djordjevic, K. Yoshimoto, and M. Valero, “The
ultimate data flow for ultimate super computers-
on-a-chip,” In Handbook of Research on Method-
ologies and Applications of Supercomputing, IGI
Global, pp. 312-318, 2021.

[9] N. Korolija and K. Milfeld, “Towards Hybrid
Supercomputing Architectures,” Journal of Computer
and Forensic Sciences, vol. 1, no. 1, pp. 47-54, 2022.

[10] D. Miladinović, M. Bojović, V. Jelisavčić, and N.
Korolija, “Hybrid Manycore Dataflow Processor,”
9th IcETRAN Conference 2022, Novi Pazar, Republic
of Serbia, June 6-9, 2022.

[11] K. Huang, Y. Liu, N. Korolija, J. M. Carulli, and Y.
Makris, “Recycled IC detection based on statistical
methods,” IEEE transactions on computer-aided
design of integrated circuits and systems, vol. 34,
no. 6, pp. 947-960, 2015.

[12] J. Popović, V. Jelisavčić, and N. Korolija, Hybrid
Supercomputing Architectures for Artificial Intel-
ligence: Analysis of Potentials, AAI 2022 Confer-
ence, Kragujevac, Serbia, May 19-20, 2022.

[13] N. Korolija, D. Bojić, A. R. Hurson, and V. Milu-
tinovic, “A runtime job scheduling algorithm for
cluster architectures with dataflow accelerators,”
Advances in computers, vol. 126, pp. 201-245, 2022.

[14] N. Korolija, B. Furht, and V. Milutinović, “Fine Grain
Algorithm Parallelization on a Hybrid Control-flow
and Dataflow Processor,” 2023.

[15] V. Milutinović, M. Kotlar, J. Salom, S. Stojanović,
Ž. Šuštran, A. Veljković, ... and R. R. Hurson, “VLSI
for SuperComputing: From applications and algo-
rithms till masks and chips,” 2022.

[16] A. Šmelko, M. Kruliš, M. Kratochvíl, J. Klepl, J.
Mayer, and P. Šimůnek, “Astute Approach to
Handling Memory Layouts of Regular Data Struc-
tures,” In Algorithms and Architectures for Parallel
Processing: 22nd International Conference, ICA3PP
2022, Copenhagen, Denmark, October 10–12, 2022,
Cham: Springer Nature Switzerland, Proceedings
pp. 507-528, January 2023.

[17] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu,
M. Chen, and K. Olukotun, “The Stanford Hydra
CMP,” IEEE Micro, vol. 20, no. 2, pp. 71–84, 2000.

[18] L. A. Barroso, K. Gharachorloo, R. McNamara, A.
Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,
and B. Verghese. Piranha, “A Scalable Architecture
Based on Single-Chip Multiprocessing,” Proceedings
of the 27th Annual International Symposium on
Computer Architecture (ISCA-27), 2000.

[19] J. M. Tendler, J. S. Dodson, J. S. F. Jr., H. Le, and B.
Sinharoy, “IBM Power4 system microarchitecture,”
IBM Journal of Research and Development, vol. 46,
no. 1, pp. 5–26, 2002.

[20] M. Zhang and K. Asanovic, “Victim Replication:
Maximizing Capacity while Hiding Wire Delay in
Tiled CMPs,“ Proceedings of the 32nd Annual
International Symposium on Computer Architecture
(ISCA-32), 2005.

http://sinteza.singidunum.ac.rs

Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Technologies and
Applications Session

165

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

[21] V. Milutinovic, B. Markovic, M. Tomasevic, and
M. Tremblay, “The split temporal/spatial cache: A
complexity analysis,” In Proceedings of the SCIzzL,
vol. 6, pp. 89-96, September 1996.

[22] A. Ngom, I. Stojmenovic, and V. Milutinovic,
“STRIP-a strip-based neural-network growth algo-
rithm for learning multiple-valued functions,” IEEE
Transactions on Neural Networks, vol. 12, no. 2, pp.
212-227, 2001.

[23] E. Speight, H. Shafi, L. Zhang, and R. Rajamony,
“Adaptive Mechanisms and Policies for Managing
Cache Hierarchies in Chip Multiprocessors,” Pro-
ceedings of the 32nd Annual International Sympo-
sium on Computer Architecture (ISCA-32), 2005.

[24] Z. Chishti, M. D. Powell, and T. N. Vijaykumar,
“Optimizing Replication, Communication and
Capacity Allocation in CMPs,“ Proceedings of the
32nd Annual International Symposium on Computer
Architecture (ISCA-32), 2005.

[25] J. Chang and G. S. Sohi, “Cooperative Caching for
Chip Multiprocessors,” Proceedings of the 33th
Annual International Symposium on Computer
Architecture (ISCA-33), 2006.

[26] B. M. Beckmann, M. R. Marty, and D. A. Wood,
“ASR: Adaptive Selective Replication for CMP
Caches,“ Proceedings of the 39th Annual Interna-
tional Symposium on Microarchitecture (MI-
CRO-39), 2006.

[27] S. Kim, D. Chandra, and Y. Solihin, “Fair Cache
Sharing and Partitioning in a Chip Multiprocessor
Architecture,” Proceedings of the 13th International
Conference on Parallel Architecture and Compila-
tion Techniques (PACT-13), 2004.

[28] P. J. Denning, “Thrashing: Its Causes and Prevention,”
AFIPS 1968 Fall Joint Computer Conference, vol.
33, pp. 915–922, 1968.

[29] A.M. Molnos, M.J.M. Heijligers, S.D. Cotofana,
J.T.J. van Eijndhoven, “Compositional Memory
Systems for Multimedia Communicating Tasks”,
Proceedings of the conference on Design, Automation
and Test in Europe, vol. 2, 2005.

[30] J. Chang and G. S. Sohi, “Cooperative Cache Parti-
tioning for Chip Multiprocessors,” Proceedings of
the 21st annual international conference on Super-
computing, 2007.

[31] P. Purdom and S. Stigler, “Statistical Properties of
the Buddy System,” Journal of the ACM (JACM),
vol. 17, no. 4, pp. 683-697, 1970.

http://sinteza.singidunum.ac.rs

