
116

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2023-116-123

Matija Matović1*,
Milan Segedinac2

1Singidunum University,
 Belgrade, Serbia

2Faculty of technical sciences at
 University of Novi Sad,
 Novi Sad, Serbia

Correspondence:
Matija Matović

e-mail:
mmatovic@singidunum.ac.rs

FUNCTOR AND APPLICATIVE FUNCTOR USAGE IN TYPESCRIPT

Abstract:
Leveraging functional programming concepts to make front-end application
development faster and easier, with fewer bugs has been tried with pure functional
programming languages such as Elm. Visible improvement in development time
and application quality compared to JavaScript has been recorded. TypeScript
is a multi-paradigm programming language, so it is possible to implement these
concepts without switching languages. Functors and applicative functors are
some of the key concepts of functional programming, useful for processing
complex objects and collections of data. As TypeScript is often used to visualize
lists of data retrieved from a server, functors and applicative functors could be
used to process data into a format required for visualization. This paper presents
theoretical explanations of the Functor and Applicative Functor concepts in
category theory and provides their implementations in TypeScript, focusing on
Maybe and List functors. The use cases were then shown, which demonstrate
that they could be useful, especially when abstracting complex concepts, so
they could be used and invoked on demand, usually with a simple command.

Keywords:
Functional Programming, Functor, Applicative Functor, TypeScript.

INTRODUCTION

Web applications today are used for a number of purposes in every
walk of life. One of the largest industries in the IT sector is web programming
with 24.5 million people employed and millions of apps deployed
annually [1]. With such work volume, it would be convenient to
develop tools and technologies that could aid in lessening the amount of
time spent in writing code, error correction, testing and validation, and
synchronizing ideas between developers working on projects. Concepts
of functional programming [2] are highly suitable for solving these prob-
lems [3]. The nature of functional programming languages aids in devel-
oping highly abstract and declarative code, that is readable and concise.
This allows programmers to write and review code faster as declarative
code maps better to a programmer’s thinking process [3]. Also, since the
functional paradigm is based on rigorous mathematical concepts [4],
[5], code validation is easier [2]. Another useful feature of functional
programming are pure functions which make testing much easier and
facilitate code parallelization [3].

INFORMATION TECHNOLOGY SESSION

http://sinteza.singidunum.ac.rs
https://doi.org/10.15308/Sinteza-2023-116-123

117
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

TypeScript is a multi-paradigm programming
language that adds static typing to JavaScript. In Type-
Script, functions are first-class objects, and generic typing
is supported, which enables an easy implementation of
concepts of functional programming.

This paper will focus on the most common functional
programming concepts, functors and applicative functors,
how they can be implemented in a multi-paradigm
environment of TypeScript, and how they can be lev-
eraged and used in front-end development. The paper
is structured in the following way. First, the mathematical
background of functors is presented and their imple-
mentation in TypeScript. Then, a similar structure is
used for discussing applicative functors. Finally, the
concluding section discusses if TypeScript achieved the
desired improvements and compare them to a scenario
where they aren’t used.

2. FUNCTORS

After categories, functors are the most important
concept of category theory [5]. They are particularly
useful when dealing with complex objects or collections
of data. Due to the importance of functors, concepts
based on them are implemented in many procedural
programming languages such as Python, Java, JavaScript,
etc.

2.1. FUNCTORS IN CATEGORY THEORY

In category theory, functors are a mapping between
two categories [6]. Given two categories, C and D, functor
F is a mapping such that:

• associates every object a in C to an object Fa in
D, and

• associates each morphism f: x→y in C to a
morphism Ff: Fx→Fy in D.

These mappings of morphisms must be such that the
following two conditions hold:

• It maps identity morphisms in C to identity mor-
phisms in D. For each object X in C it must hold
that Fidx=idFx, and

• Mapping of composition of any two morphisms g
and h, such that h: a→b and g: b→c, must be equal
to composition of mappings of those morphisms,
or formally: F(g∘h) = Fg∘Fh.

If these two conditions are met, the functor preserves
the structure of the original category. If a category is pictured
as a web where the objects are considered as nodes, and
morphisms between them as edges, then functors aren’t
allowed to introduce tears to the web’s fabric [5]. They
can merge multiple objects or morphisms together,
but they cannot remove any connections. If a path
exists between some two objects in the original category,
then a path must also exist between their mappings in
the resulting category. Categories consist of objects and
morphisms, i.e. connections between objects. If these
concepts are transferred to programming, then objects
would be data types and morphisms would correspond
to functions, which map one data type to another [5]. If
these categories are pictured as objects, in a category of
categories, then functors would be morphisms between
categories. Considering that categories in programming
correspond to types, functors in programming would
then be type constructors. In other words, functors in
programming are a type of containers or wrappers on
basic data types, that add certain semantics to them, and
they would also add functionality according to that
semantics to the functions they map and the underlying
data types that they wrap [2].

2.2. FUNCTORS IN TYPESCRIPT

A functor implementation1 needs to implement one
function called the map function. This function receives
a functor and a function, then applies that function to
a value contained inside the functor. Function map re-
ceives a function (that receives a value of type a, and
returns a value of type b), and a value of type a wrapped
inside functor f. It returns a value of type b, also wrapped
within f. From the function type, it can be concluded
that the map function receives a functor and a function
and applies that function to the value wrapped inside the
given functor, according to the context of the functor
within which it is wrapped [2]. If currying [7] is applied,
the function type can be written as in Listing 1.

class Functor f where
 fmap :: (a -> b) -> (f a -> f b)

Listing 1 - map function type rewritten so it
accepts one parameter (a function) and
returns one parameter (also a function)

1 All the code implementations in this paper, and more, can
be found at our GitHub page

http://sinteza.singidunum.ac.rs

118
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

Function map can also be seen as a function that
takes a function of type a→b, and returns a function of
type Fa→Fb. If compared to the mathematical definition
of a functor, it can be derived that the definitions are
equivalent. The map function, thus, maps objects and
morphisms in one category, to objects and morphisms
in another category. To be a functor, f has to satisfy the
two conditions specified above. TypeScript considers
functions first-class objects, and supports type variables
and generic types, features to be used extensively for
functor construction in TypeScript.

2.2.1. Maybe functor

One of the most commonly used functors in func-
tional programming is the Maybe functor. The Maybe
functor gives the value a context of “uncertainty”. The
value may or may not be contained within the functor.
This is commonly used for computations that may or
may not return a value (like finding an element within
a list, or an entry in a database), or for computations
that may break due to an error. There are two forms
that the Maybe functor can take: Nothing, which rep-
resents the absence of the value contained within the

functor, and Just val, which represents that a value is
present inside. The two options are two separate type
constructors, so the Maybe functor has two functions
that return different forms of the Maybe functor. In
addition to this, value a represents a type parameter
which is used to declare which type the Maybe functor
will wrap. Mapping of a function (Listing 2) on a Noth-
ing value produces no result, as there is nothing to map
the function to. Mapping of a function to Just val applies
that function to val, the value contained inside the func-
tor, i.e., passes on the function to the value inside the
functor. The map function satisfies both functoriality
conditions [5]. As mentioned, Maybe is made from two
constructors, and it receives one type parameter. If this
is translated into TypeScript, that would mean that there
are two types necessary, each with its own constructor.
This is best implemented if Maybe is a generic abstract
class that takes a type parameter and is inherited by Just
and Nothing types (Listing 2). The Maybe class could
also have an abstract map method that can be used for
polymorphism.

The Maybe functor is particularly useful when chaining
multiple operations that may fail, or for element lookup
in lists, which may fail (Listing 3).

abstract class Maybe<T> {
 abstract mmap<X>(f: (x: T) => X): Maybe<X>
}
class Just<T> extends Maybe<T> {
 value: T;

 constructor(value: T) {
 super();
 this.value = value;
 }

 mmap<X>(f: (x: T) => X) {
 return new Just<X>(f(this.value));
 }
}
class Nothing<T> extends Maybe<T> {
 mmap<X>(f: (x: T) => X) {
 return new Nothing<X>();
 }
}

function maybeMap<T, U>(f: (x: T) => U, m: Maybe<T>): Maybe<U> {
 f = curry(f);
 if (m instanceof Just) {
 let {value} = m;
 return new Just(f(value));
 }
 return new Nothing<U>();
}

Listing 2 - Example implementation of Maybe functor in TypeScript.

http://sinteza.singidunum.ac.rs

119
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

2.2.2. List functor

When constructing a list, in most programming
languages, it is necessary to pass the type of elements it
will contain. This is similar to previously mentioned type
constructors, which receive a type as their parameter. Also,
a list adds a new context to a type, a context of non-deter-
minism [5], since a list isn’t a single value, but a collection
of multiple values. Thus, if a map function that satisfies
both functoriality conditions can be constructed, List can
also be considered a functor. Such a function can indeed
be constructed, and List is indeed a functor. Both lists,
and map function for lists are already implemented in
TypeScript, but the List type, however, isn’t a recursive
type as it is in functional programming. Therefore, we
replicated recursive definition in TypeScript (Listing 4).

Map function (Listing 5) can be easily implemented
similar to how it was implemented in Haskell [2]. This
function receives a list and a function, then applies that
function to each element in the list. This makes sense
from a mathematical perspective - a list is a collection
of values, where each one has an equal probability of
being accessed or modified. Because of that, there is no
specific subset of elements, but the function is applied
to each element.

function listLookup(list: Array<number>, x: number): Maybe<number> {
 for (let i = 0; i < list.length; i++) {
 if (list[i] == x)
 return new Just(i);
 }
 return new Nothing<number>;
}

function inc(x: number): number {
 return x + 1;
}

let list1 = [1, 2, 3, 4, 5];
let lookupResult1 = listLookup(list1, 3).mmap(inc).mmap(inc);
let lookupResult2 = listLookup(list1, 6).mmap(inc).mmap(inc);
console.log(lookupResult1); // Prints Just: { “value”: 4 }
console.log(lookupResult2); // Prints Nothing: { }
// More functional programming way

lookupResult1 = maybeMap(inc, maybeMap(inc, listLookup(list1, 3)));
lookupResult2 = maybeMap(inc, maybeMap(inc, listLookup(list1, 6)));
console.log(lookupResult1) // Prints Just: { “value”: 4 }
console.log(lookupResult2) // Prints Nothing: { }

Listing 3 - Example of Maybe usage in TypeScript.

abstract class List<T> {
}
class Empty<T> extends List<T> {
}
class Cons<T> extends List<T> {
 head: T;
 tail: List<T>;

 constructor(value: T, tail: List<T>) {
 super();
 this.head = value;
 this.tail = tail;
 }
}

Listing 4 - List type definition in TypeScript.

http://sinteza.singidunum.ac.rs

120
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

3. APPLICATIVE FUNCTORS

Functors are useful when applying a function to an
element contained within some wrapper when those
functions have only one input argument. To enable func-
tion with multiple input arguments, one has to deal with
currying and partial application. Currying isn’t native to
TypeScript as it is to pure functional programming
languages, so it needs to be implemented. Still, the currying
in TypeScript is easy to implement, and can be particu-
larly useful when partial application is used, especially for
concepts from category theory such as applicative func-
tors. It was already discussed that a functor is a sort of
wrapper that adds context to a value. It is possible to pass
a function to this wrapper, that is, it is possible to enclose
a function within a functor. If the function takes multiple
parameters, it is also possible to map a function to a value
within a functor, and thus receive a partially applied func-
tion in a wrapper. Eventually, it will be required to pass
the second parameter to the function, so that a result can
be evaluated. Let the other value be wrapped in a functor
as well. A function that will achieve this has to have a sig-
nature f (a -> b) -> f a -> f b. The reason why this function
returns a value in a functor is that, if the initial function
takes more than two parameters, multiple partial applica-
tions will need to be performed. If the function has the
signature f (a -> b) -> f a -> f b, then this partial applica-
tion can be chained and performed easily [8].

Invocation of a partially applied function in a func-
tor and chaining described in the previous section can be
achieved using a special concept called applicative func-
tors. Applicative functors need to fulfill two main func-
tionalities [9]. The first is to implement a function with
a signature described above, which is usually called “su-
permap”, and represented with an infix “<*>” operator.

The second functionality is to put a value within a
wrapper or to add a certain context to it. In other words,
it should be able to put a value inside a functor. This
can be described with a typeclass definition shown in
Listing 6.

class (Functor f) => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

Listing 6 - Applicative typeclass definition.

Type of the pure function somewhat describes its
function. It takes a value of type a, and encapsulates it
into functor f, producing f a. On the other hand, the
“<*>” operator type is similar to map function type, but
instead of a -> b, it takes f (a -> b). That’s why, in this
paper, this function will be designated as a “supermap”

There are a couple of conditions that constructs need
to satisfy in order to be considered applicative functors.
Those conditions are [8]:

1. Identity: pure id <*> v = v;
2. Composition: pure (.) <*> u <*> v <*> w

= u <*> (v <*> w);
3. Homomorphism: pure f <*> pure x =

pure (f x);
4. Interchange: pure f <*> pure x = pure (f x),

and
5. pure f <*> x = fmap f x, especially important

for mapping functions that receive multiple
parameters.

let l = new Cons(5, new Cons(4, new Cons(3, new Cons(2, new Cons(1,
Empty<number>)))))

function listMap<T, U>(f: (x: T) => U, l: List<T>): List<U> {
 if (l instanceof Cons) {
 var {head, tail} = l;
 return new Cons(f(head), listMap(f, tail));
 }
 return new Empty<U>();
}

let listMapResult = listMap(inc, l);
console.log(listMapResult) // Prints List: {“head”: 6, “tail”: {“head”: 5, “tail”:
{“head”: 4, “tail”: {“head”: 3, “tail”: {“head”: 2, “tail”: {}}}}}}

Listing 5 - List map function implementation in TypeScript and sample usage.

http://sinteza.singidunum.ac.rs

121
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

3.1. APPLICATIVE FUNCTORS IN TYPESCRIPT

Implementation of applicative functors isn’t much
more difficult than their implementation in, for
example, Elm [10]. In addition, because of the inability
of TypeScript to statically infer the return data types
in currying, the code TypeScript interpreter will throw
warnings about type mismatch. Still, the code will work
and produce the desired outputs.

3.1.1. Maybe applicative functor

The supermap function (Listing 7) returns Nothing
if the passed value that a function is being mapped to
is also Nothing. Otherwise, the function is taken out

of the wrapper, and applied to the value inside the Just
wrapper. For a value x, the pure function (Listing 7)
returns Just x, because that is the minimal context
that keeps the information about the original value [2].
One important thing to remember is, since applicative
functors are largely used together with partial application,
the function passed as a parameter must be curried. So,
it will be necessary to modify the map function by adding
the function currying.

One of the main benefits of applicative functors is
applying a function of multiple parameters to values in
a wrapper (Listing 8).

function maybeMap<T, U>(f: (x: T) => U, m: Maybe<T>): Maybe<U> {
 f = curry(f); // IMPORTANT: this line is added compared to the implementation in
Listing 8
 if (m instanceof Just) {
 var {value} = m;
 return new Just(f(value));
 }
 return new Nothing<U>();
}
function maybePure<T>(x: T): Maybe<T> {
 return new Just(x);
}

function maybeSuperMap<T, U>(f: Maybe<(x: T) => U>, m: Maybe<T>): Maybe<U> {
 if (f instanceof Just) {
 var {value: func} = f;
 return maybeMap(func, m);
 }
 return new Nothing<U>();
}

Listing 7 - Implementation of pure and supermap functions for Maybe and modified map function in TypeScript.

function threeNumbers(a: number, b: number, c: number): number {
 return a * b + c**2;
}

let n1 = new Just(3);
let n2 = new Just(4);
let n3 = new Just(2);

let supermap1 = maybeSuperMap(maybePure(threeNumbers), n1);
let supermap2 = maybeSuperMap(supermap1, n2);
let supermap3 = maybeSuperMap(supermap2, n3);
console.log(supermap3); // Prints Just: {“value”: 16}

Listing 8 - Example usage of the Maybe applicative in TypeScript.

http://sinteza.singidunum.ac.rs

122
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

3.1.2. List applicative functor

Lists are not only functors, but also applicative func-
tors. Functors wrap regular values, while applicative
functors wrap functions. So, a list applicative functor
would be just a list of functions. The supermap func-
tion should then apply all those functions within a list,
to a list of values. The supermap function combines the
functions in the first list with the values in the second
list by the Cartesian product. If the list of functions has
m elements, and the list of values has n elements, then
the resulting list must have m×n elements. This sort of
behavior is necessary in order to satisfy the applicative
functoriality conditions [5]. Second, if only some of the
functions were applied to only some values, how would
one choose the functions or the values that should be
excluded from the product? Third, in category theory, a

list can be considered an object with non-deterministic
value (it contains multiple values simultaneously). So,
the product of two lists, as they are non-deterministic
values, should contain all possible combinations of all
the values, which is exactly what Cartesian product is.
The pure function, which needs to keep the minimal
context of the original value, just puts the value into a
singleton list. Implementation of the List applicative in
TypeScript is a lot more difficult than the Maybe ap-
plicative, because of the concatMap function needed
in the supermap implementation. The concatMap
function, in turn needs the concat function to be im-
plemented, which needs the fold function to be im-
plemented, which needs the joinLists function to be
implemented (Listing 9). All this requires a lot of work
and functional programming knowledge, as well as good
knowledge of TypeScript peculiarities.

function listMap<T, U>(f: (x: T) => U, l: List<T>): List<U> {
 f = curry(f);
 if (l instanceof Cons) {
 let {head, tail} = l;
 return new Cons(f(head), listMap(f, tail));
 }
 return new Empty<U>();
}
function fold<T>(product: (l: T, r: T) => T, accumulator: T, xs: List<T>): T {
 if (xs instanceof Cons<T>) {
 let {head, tail} = xs;
 return product(head, fold(product, accumulator, tail));
 }
 return accumulator;
}
function listAdd<T>(x: T, l: List<T>): List<T> {
 return new Cons(x, l);
}
function join<T>(l1: List<T>, l2: List<T>): List<T> {
 if (l1 instanceof Cons) {
 let {head, tail} = l1;
 return listAdd(head, join(tail, l2))
 }
 return l2;
}
function concat<T>(l: List<List<T>>): List<T> {
 return fold(join, new Empty<T>(), l);
}
function listConcatMap<T>(f: (x: T) => List<T>, l: List<T>): List<T> {
 return concat(listMap(f, l));
}
 listPure<T>(x: T): List<T> {
 return new Cons(x, Empty<T>);
}
function listSuperMap<T, U>(fs: List<(x: T) => U>, xs: List<T>): List<U> {
 fs = listMap(curry, fs);
 return listConcatMap(f => listMap(x => f(x), xs), fs);
}

Listing 9 - Implementation of the applicative functions for the List type in TypeScript. Implementation of necessary
helper functions is also shown.

http://sinteza.singidunum.ac.rs

123
Sinteza 2023
submit your manuscript | sinteza.singidunum.ac.rs

Information Technology Session

SINTEZA 2023
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND DATA SCIENCE

The supermap function applies all the functions in
the first list to the values in the second one. This pro-
duces a list of lists, that is, a list of results for each of
the functions for a specific value. This list of lists is then
flattened to a single list using the concat function. The
list supermap function is very useful for implementing
the list comprehension mechanism. List comprehension
is a mechanism to process lists in a quick and readable
way, and it is common in languages known for their
expressiveness and readability like Haskell and Python.
TypeScript doesn’t have the list comprehension mecha-
nism, but it can be implemented, to an extent, using the
supermap function for lists (Listing 10).

With all the necessary functions implemented, the
List applicative can be used in the same way as it would
be in Haskell (Listing 10). It is up to the programmers
themselves to decide whether the benefits of the List
applicative outweigh the effort necessary to imple-
ment it. In general, if there is a combining function f
that combines n elements from n lists, the lists can be
combined if it has the following type:

function combine<T>(x1: T, x2: T, …, xn: T)

The combination would then be achieved by chaining
a sequence of n supermap calls similar to the one in
Listing 29.

function combine<T>(a: T, b: T) {
 return new Cons(a, new Cons(b, new Empty<T>()));
}

let l_left = new Cons(1, new Cons(2, new Empty<number>()));
let l_right = new Cons(11, new Cons(12, new Empty<number>()));
let _cartesian = listSuperMap(listPure(combine), l_left);
let cartesian = listSuperMap(_cartesian, l_right);

Listing 10 - Example implementation of Cartesian product using the List applicative functor in TypeScript.

4. CONCLUSION

This paper provided theoretical explanations of the
Functor and Applicative Functor concepts in category
theory. It then provided their implementations Type-
Script, focusing on Maybe and List functors. Their
use-cases were then shown, where it was demonstrated
that they could be useful, especially when abstracting
complex concepts, so they could be used and invoked
on-demand, usually with a simple command. This paper
had also shown that, because TypeScript is a multi-
paradigm language, the implementation of these con-
cepts is not significantly more difficult, or different, to
their implementation in Haskell, and the only drawback
of TypeScript is that the return types of some functions
cannot be statically type-checked. Thus, for a programmer
that is well-versed in functional programming and wants
to speed up or improve some of their work, TypeScript
provides a good support for implementation of functional
programming concepts.

5. REFERENCES

[1] N. Galov, “A Dive Into the Ocean of Web Design
Statistics in 2022,” 30 March 2023. [Online].
Available:https://webtribunal.net/blog/web-design-
statistics/#gref. [Accessed 22 April 2023].

[2] M. Lipovaca, Learn you a Haskell for Great Good:
A Begginer’s Guide, No Starch Press, 2011.

[3] X. C., “StackOverflow,” 22 October 2009. [Online].
Available: https://stackoverflow.com/a/1604828.
[Accessed 22 August 2022].

[4] S. MacLane, Categories for the Working Mathema-
tician, 2nd ed., Springer, 1971.

[5] B. Milewski, Category Theory for Programmers,
Boston: Self-published, 2018.

[6] J. N., Basic Algebra, 2nd ed., vol. II, Dover Books, 2009.
[7] H. Curry and F. Robert, Combinatory Logic, 2nd ed.,

vol. I, Amsterdam, Netherlands: North-Holland
Publishing Company, 1958.

[8] M. Matovic, Analysis of Category Theory Concepts
in Elm framework, Novi Sad: Faculty of Technical
Sciences, 2022.

[9] C. McBride and R. Paterson, “Applicative Program-
ming with Effects,” Journal of Functional Program-
ming, 1 January 2008.

[10] E. Czaplicki, “The Elm Programming Language,”
[Online]. Available: https://guide.elm-lang.org.
[Accessed 5 September 2022].

http://sinteza.singidunum.ac.rs

