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Abstract: 
In this paper, a novel distributed on-policy Actor-Critic algorithm for multi-
agent reinforcement learning is proposed. The algorithm consists of the temporal 
difference scheme with function approximation at the Critic stage, and a policy 
gradient algorithm at the Actor stage, derived starting from a global objective. 
At both stages, decentralized agreement among the agents is achieved using 
the linear dynamic consensus strategy. Compared to the existing schemes, the 
algorithm has improved convergence rate and noise immunity, and a possibility 
to achieve multi-task global optimization. 
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INTRODUCTION

Under the framework of Markov Decision Processes (MDPs) it is 
possible to model general decision-making problems in modern complex 
systems, including Networked Control Systems (NSC), Cyber-Physical 
Systems (CPS) and Internet of Things (IoT). Reinforcement learning 
(RL) has been generally accepted as a powerful method for solving MDPs 
based on online data-based trial-and-error approach, even in the case of 
very large state and action spaces (see, e.g. [1, 2]). In this case, function 
approximation represents an important factor, and the problem setup is 
modified such that the value or policy function is estimated using a lim-
ited number of parameters, including the possibility of using (deep) neu-
ral network approximators [3, 4, 2]. Three approaches can be, in general, 
distinguished: a) value-based methods, which perform parametrization of 
the state-value function (in on-policy or off-policy scenario; see e.g. [5, 6, 
4]); b) policy gradient methods, which parameterize the policy function 
typically using a gradient descent algorithm (e.g. [7]); and c) the Actor-
Critic (AC) methods, which are based on the simultaneous estimation 
of the parameters of both value function (Critic) and policy function 
(Actor) [8, 9, 10, 11].
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In this paper, we deal with multi-agent distributed 
and decentralized RL methods, which are currently in 
a strong focus of researchers and practitioners in the 
modern fields of NSC, CPS and IoT (e.g. [12, 13, 14, 15, 
16, 17, 18, 19, 20, 21]). Distributed AC algorithms have 
been treated in [22, 23, 24, 25, 26, 27, 28] under differ-
ent settings. In our approach, we assign an independent 
MDP to each agent and assume the on-policy setup, in 
which in each time step the agents are applying the con-
trol policy which is currently estimated as the optimal 
one. We assume a linear approximation of the state-val-
ue function at the Critic stage, and a general nonlinear 
approximation of the policy function at the Actor stage. 
The derived Actor stage provides estimates of the policy 
parameters based on a global objective given in the form 
of a sum of weighted locally averaged state-value func-
tions, and an exact policy gradient algorithm which we 
derive from the TD(λ) scheme implemented at the Crit-
ic stage. In our multi-agent setup, we propose the agents 
to collaborate using a linear dynamic consensus scheme 
aimed at achieving agreement on the policy and value 
functions between the agents (see, e.g. [29, 19, 16]). The 
proposed distributed algorithm can be effectively used 
in multi-task RL problems [24], and as a parallelization 
tool, significantly improving the rate of convergence, 
and reducing the overall estimation variance.

The paper is organized as follows. Section 2 contains 
the problem formulation and the main definitions. In 
Section 3 we introduce the Critic stage, while in Section 
4 we derive the exact policy gradient and the entire AC 
algorithm in two time-scales. In Section 5 we provide 
some concluding remarks.

2. PROBLEM FORMULATION

Consider N agents operating in Markov Decision 
Processes MDP(i), i=1,…,N, defined by the quadruplets 
(S,A,Pi,Ri), where S and A denote finite sets of states and 
actions, Pi:S×S×A→[0,1] is the local transitional probabil-
ity Pi(s'|s,a) of agent i and Ri:S×A×S→R is the correspond-
ing local real-valued reward function, such that the ran-
dom reward Ri(s,a,s') is characterized by the distribution 
pi(⋅|s',a,s), with the expectation ri(s',a,s), i=1,…,N.

Communication among the agents is modeled by a 
strongly connected digraph G={N,E}, where N is the set 
of nodes (agents) and E the set of directed arcs repre-
senting inter-node communications. We assume strict 
Information Structure Constraints (ISC), such that node 
i cannot directly obtain information about the states 
and actions from MDP(j), j≠i and such that inter-agent  
messages can be obtained at node i only from the neigh-
boring nodes [19, 29, 16, 30].

The agents learn from data received by interacting 
with their local environments. In the so-called on-policy 
case, agent i at time t applies an action                     , where 
πi: S×Ai→[0,1] is a policy function (a conditional prob-
ability distribution on the set of the local state/action 
pairs). As a consequence, the state of agent i changes to        
     receiving the random reward        , i=1,…,N. The local  
state value function at node i, under policy πi and with 
the discount factors γi∈[0,1], is given by Equation 1, 
where Eπi {⋅} denotes the expectation over data generated 
by the Markov chains induced by πi, i=1,…,N.

Equation 1 – Local state value function.

Introduce the following assumption ensuring that 
state value functions are well defined: 

(A1) Pπi,i=∑a∈Aπi(a|s)Pi(s'|s,a) is such that I-γi Pπi,i,i is 
nonsingular, for all πi, i=1,…,N.

In the context of the Actor-Critic (AC) methodology 
in the single agent case we consider two kinds of local 
parametrization:

a) At the Critic stage, the local value function Vπi,i(s) 
is approximated by                                , where θi is the local 
parameter vector and φi(s)∈RLθ the local feature vector, 
typically satisfying Lθ<<M;

b) At the Actor stage, policy πi is parameterized 
using the policy parameter vector wi∈RLw, Lw<<M, so that 
πi=πi

wi. Agent i is aimed at getting a locally optimal value 
wi* in the sense of a pre-selected criterion using the cur-
rent estimates θi and the local tuples                       .

The expected linear approximation of the local value 
function for a given wi is defined by Equation 2, where 
θi=θi (wi) is the local parameter vector. 

Equation 2 – Linear approximation of the  
local value function.

The locally optimal value is wi*= Argmaxwi Ji(θi (wi)), 
i=1,…,N.

In the adopted multi-agent setting, we are faced with 
the set of N local criteria Ji(θi) with N possibly differ-
ent optimal parameter values wi*. We are looking for 
a solution of a multi-objective optimization problem 
by introducing a convenient global utility function de-
noted as J(θ*(w1,…,wN);c). This function depends on the 
global vector θ*(w1,…,wN), |θ*|=Lθ, obtained at the collec-
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tive critic stage characterizing the value function of the 
whole multi-agent system, and on some parameter vec-
tor c, dim(c)=N, 0≤ci≤1, ∑ic

i =1 defined a priori, giving 
different importance to the agents. Hence, we introduce 
the global criterion in Equation 3 which enables getting 
N local optimal policies.

Equation 3 – Global criterion

However, our goal is to learn a single policy that per-
forms optimally for the averaged tasks, so that the goal 
is to learn a vector w* characterizing the common policy 
function 

3. CRITIC: DISTRIBUTED TD(λ) ALGORITHM

The Critic part of the proposed AC scheme aims at 
generating recursive estimates θi

t, i=1,…,N, using local 
data and communications with the neighboring nodes 
trying to asymptotically achieve agreement so that 
θ1=⋯=θN=θ*. The algorithm consists of two character-
istic parts: 1) an update of the local parameter vectors θi 
based on the locally acquired observations, and 2) con-
vexification of the parameter vectors obtained from the 
neighborhood following a linear consensus scheme. We 
shall consider in this paper a distributed version of the 
popular temporal difference TD(λ) algorithm, equiva-
lent in the sense of asymptotic behavior under on-pol-
icy learning to both the Gradient Temporal Difference 
GTD(λ) algorithm and the Emphatic Temporal Differ-
ence ETD(λ) algorithm [11, 5].

Introducing the bootstrapping parameters λi (as-
sumed to be constant, for the sake of simpler notation), 
we come to the generalized Bellman operators T(πi,λi,i)
Vi=rπi,λi,i+Pπi,λi,iVi, where Pπi,λi,i=I-(I-λi Pπi,iΓi)-1(I-Pπi,iΓi) 
and rπi,λi,i=(I-λi Pπi,iΓi )-1 rπi,i . The gradient TD-algorithms 
GTD(λi) for local linear value function approxima-
tion are derived using the following objective function:  
                    . where Πi is the projection  
operator onto the approximation space LΦi w.r.t. the 
weighted Euclidian norm ∥⋅∥di

b ) [6].
The value function approximation can formally 

be expressed as Vθi,i=Φi θi, where Φi∈RM×Lθ is a feature  
matrix with its s-th row equal to the corresponding vec-
tor φiT (s). We also adopt the following assumption:

(A2) a) the column vectors of Φi are linearly inde-
pendent;

b) the feature vectors φi(s) are bounded and with 
number 1 as their Lθ-th element [11].

The locally optimal parameter vectors θi* 
are solutions w.r.t θi of equation                 ,where  
                                             represents the temporal difference 
and                             the trace vector (    =0).

Accordingly, part 1) of the Critic algorithms attached 
to the nodes is defined in Equation 4, where αi

t>0 is the 
step size (to be specified later).

Equation 4 – Part 1 of the Critic algorithm

The part 2) is defined in the form given in Equa-
tion 5, where     are elements of an N×N random matrix  
                                             , which is row-stochastic (    ≥0), 
with     =0 for all (j,i) not belonging to the set of directed 
arcs N.

Equation 5 – Part 2 of the Critic algorithm

The complete Critic algorithm will be denoted as 
AlgC.

4.  ACTOR: ALGORITHM DERIVED FROM 
DISTRIBUTED TD(Λ)

4.1. POLICY GRADIENTS

The starting relation is                                              .  
Consequently, Equation 6 is obtained.

Equation 6

From Equation 6, the following expression for  
∇wiθiT is obtained directly (see [11] for the single agent 
case), i.e.,

Equation 7

where                                                                   .
Let                                                                                                  and            

                                                               . Accordingly, we 
have Equation 8: 
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Equation 8

Therefore, the expression for the gradient of the 
global criterion is given by the following Equation 9.

Equation 9

In general, the policy gradient defined by Equa-
tion 9 can lead to nontrivial implementation problems, 
especially in relation with the terms     and            .  
However, when the value function is estimated in the 
Critic part by TD(λ), the solutions become simple and 
computationally attractive [11, 25].

4.2. POLICY GRADIENT IN THE ON-POLICY SCENARIO

It is easy to demonstrate that the algorithms TD(λ), 
GTD(λ) and ETD(λ) are equivalent in the on-policy sce-
nario. In order to derive an algorithm for the Actor part 
on the basis of the exact gradients of the criterion func-
tion presented in Section 2, it is necessary to reconsider 
the derivation presented in the preceding subsection.

Theorem 1. For the problem of on-policy estimation, 
the following holds:                                                               .

Proof. The proof is based on demonstrating that, in 
the case of on-policy estimation,       satisfies Equation 8. 
We can derive the following expression                           
                                                                                                                                            
                where we have exploited the fact that.  
                                    Hence, the result follows. ◻

4.3. ALGORITHM FOR THE ACTOR STAGE

According to the derivation from the previous subsection, 
we use the basic relation for the on-policy scenario, and ob-
tain for t≥0 the corresponding iterations for the estimation of 
the local policy parameters in the Actor part, given in Equa-
tion 10, where                                                                         ,while 
δi

t is defined above.

Equation 10 Actor part of the algorithm

To achieve two-time-scale functioning of the whole 
AC algorithm, we adopt                            .

In the case of the idea exposed in Section 2 to find 
the optimal policy function common for all the agents, it 
is, simply, necessary to add to Equation 10 a “consensus” 
part of the algorithm, identical to the one formulated in 
Equation 5 obtained after replacing θ for w. Then, under 
appropriate assumptions the algorithm asymptotically 
provides consensus, i.e. w1=⋯=wN=w*. The meaning of 
such a result is intuitively clear: the obtained solution 
provides an "average" solution maximizing the scalar-
izing objective function, but not fulfilling, in general, 
optimality conditions for any of the agents within the 
scope of the multi-task problem posed.

5. CONCLUSION

In this paper, we proposed a new distributed on-pol-
icy Actor-Critic algorithm using the TD(λ) algorithm 
with function approximation and dynamic consensus at 
the Critic stage, and the consensus-based policy gradi-
ent algorithm at the Actor stage. The gradient has been 
derived starting from a multi-task problem formulation 
and a global objective representing a weighted sum of 
local criteria. The algorithm can be highly effective in 
practice, achieving improved rate of convergence and 
general estimation covariance reduction. 

Future work will be directed towards rigorous con-
vergence analysis of the proposed scheme, as well as in 
depth simulation-based verifications.
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