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ON VIRTUAL SCREENINGS

Abstract: 
The field of medicinal chemistry has become increasingly dynamic and me-
dicinal chemists face the challenge of rapidly evolving new technologies. In 
the last decade, medicinal chemistry methodologies have been largely replaced 
from an individual scheme to an interdisciplinary approach. Furthermore, the 
shift from traditional to Omics-based applications is needed to develop com-
putational, chemo, and bioinformatic tools that could help medicinal chemists 
to analyse, link, and compare the research results. Hence, drug research has 
necessarily oriented drug discovery toward more rational strategies. In silico 
Virtual Screening (VS) is one of the most promising approaches to accelerate 
the drug development process. Efficient analysis of key compounds and target 
properties is crucial for carrying out a virtual screening process. At the same 
time, it can reduce the attrition rates in drug development. Of course, the 
main purpose of VS is to identify novel chemical scaffolds as hits for further 
optimization using medicinal chemistry approaches. An overview of the most 
employed methods for VS, challenges, and new directions will be discussed.

Keywords: 
Drug Discovery, Virtual Screenings, Ligand-based, Structure-based. 

INTRODUCTION

Pharmaceutical research is moving towards a more interdisciplinary 
endeavour. Indeed, drug development requires information on a broad 
range of topics: not only chemical structures and reactions but also tar-
get structure, biological pathways, drug-target interactions. Hence, the 
collaboration between the researchers working in different disciplines 
is essential to maximize the potential benefits of drug discovery (DD).

DD involves various steps: a discovery phase, which includes target 
discovery (only 10% of the human genome is druggable) and the identifi-
cation of active molecules or hits. This phase ends with the identification 
of lead molecules. The second phase consists in the lead optimization. 
This phase focuses on optimizing lead activity and ADMET (absorption, 
distribution, metabolism, excretion, toxicity) properties. 
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The third phase includes the product development, 
with the preclinical and clinical trials (I, II, and III), and, 
finally, the registration phase, which will enable distri-
bution on the market and the clinical use of drugs.[1] 

The estimation of the median cost of efficacy trials 
for new drugs approved by the FDA amounted to $19 
million.[2]

Using computational approaches, many of the steps 
involved in the drug discovery projects can be more ef-
ficient and rewarding. Nowadays, computational tools 
are useful not only for hit/lead identification and opti-
mization, but also for target identification, prediction of 
druggable pockets, and accurate prediction of ADME-
Tox-related properties and metabolism.[3-5]

Several marketed drugs such as oxymorphone, 
saquinavir, imatinib, zanamivir, dorzolamide norfloxa-
cin, and several clinical candidates, have been discov-
ered or optimized with the aid of molecular modelling 
techniques.[6]

One of the most promising techniques to accelerate 
the DD process is to perform in silico virtual screening 
(VS).[7] VS hit identification rates vary from about 40% 
to 1%,[8] with most active hit compound activities rang-
ing from M to nM.

However, hit rates can provide a loose measure of 
the success of the VS method since the main aim is not 
necessarily maximizing hit rates and reaching nM activ-
ity, but identifying novel active compounds that contain 
new scaffolds, are synthesizable, and provide a basis for 
hit-to-lead optimisation.

There is a continuous flow of publications reporting 
ligand-based (LB) and structure-based (SB) VS applica-
tions where new active compounds have been identified 
employing a variety of VS methods.[9]

The huge computational demand of such VS ap-
plications requires developing parallel algorithms and 
exploiting the computational power of large high-per-
formance computing (HPC) systems to accomplish such 
screenings, within an affordable time. In fact, DD can be 
significantly boosted using big data resources.

In this framework, VS approaches, their applica-
tions, new trends, and challenges need to be examined 
and discussed. 

2. OVERVIEW OF CURRENT APPROACHES 
USED IN VS

VS methodologies can be broadly grouped into two 
main categories: LBVS and SBVS. The former requires 
a set of known active ligands for structure similarity 
search, while the latter requires the 3D structure of the 
target.

When both ligand and structural information exists, 
it is possible to combine methods to yield improved re-
sults. In general, the combination of more approaches, 
in a hierarchical or parallel way, can lead to an increase 
in both scaffold diversity of the retrieved hits and hits 
rate.[7, 10] 

VS methods are typically validated by retrospective 
analysis on benchmark datasets considering the diver-
sity of targets, the diversity of ligands, and the selection 
of appropriate decoys. This led to high-quality and reli-
able benchmarking datasets, proving their strength.[11] 

Benchmark datasets consist of series of active and 
inactive molecules, each associated with a specific tar-
get. Often the active compounds are experimentally 
validated, instead, the documentation of experimentally 
validated inactive molecules is scarce. For this reason, 
assumed inactive molecules (decoys) are frequently em-
ployed.

When new targets are studied consensus approach 
and studies of target similarities can help to maximize 
the VS success.

Similarity LB methods are based on the calculation of 
molecular descriptors, which consider molecular prop-
erties of different complexity 1D-, 2D- or 3D.[12, 13] 
In particular, these methods estimate similarity metrics 
considering coefficients such as Tanimoto index, Dice 
coefficient (Hodgkin index), Cosine coefficient or dis-
tances, Soergel distance, Euclidean distance, Hamming 
(Manhattan or city-block) distance.[14] Furthermore, 
also quantitative structure-activity relationship (QSAR) 
methods are largely applied for LBVS. QSAR model de-
velopment and application include preparation of data, 
analysis of data, model development, model validation, 
and VS of chemical databases.[15]

SBDD and SBVS have contributed to the introduc-
tion of ∼50 new compounds into clinical trials and nu-
merous drug approvals.[16] To improve the predictive 
power of docking experiments, it is necessary to have 
well-established protocols and robust metrics to meas-
ure it. Docking approach benchmarking for VS applica-
tion includes two properties:
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a. 	 RMSD computed for the predicted binding pose 
against the experimental pose;

b. 	 Binding free energies/docking energies which are 
proportional to experimental inhibition/dissocia-
tion constants.

If the binding mode prediction is recognised to be 
often accurate (RMSD < 2 Å), the second is not equally 
as precisely determined. In fact, docking ends often with 
several false-positive hits because of a lack of exactness 
in predicting binding affinity. 

Many factors can influence the performance of dock-
ing experiments. Some limitations can be overcome 
considering alternative protonation states for critical 
residues, the flexible side-chain minimization, consen-
sus scoring, rescoring of the docking complexes with 
different scoring functions, or the inclusion of solvation 
effects through specific protocols.[17] 

No single docking software is superior to the others 
in all respects.[18] The validation process can help to 
choose the most appropriate program and protocol for 
a specific target. However, in a new target VS context, 
consensus docking can improve the reliability of dock-
ing by using different docking programs.[19] Pre-pro-
cessing and curation of data are mandatory to correctly 
assess the quality of information and avoid any potential 
bias in VS methods validation.[6]

Aiming at finding new scaffolds, fragment-based VS 
has emerged to be a powerful approach by exploiting 
molecular fragments with molecular weight <150–250. 
Ideally, the different identified small fragments can be 
subsequently connected by opportune linkers to in-
crease the hits potency.[20] 

Pharmacophore modelling (LB or SB) is an impor-
tant and useful method for drug discovery.[21] Among 
the 3D methods, no doubt that the pharmacophore 
approach for VS is the most appreciated by medicinal 
chemists because of a common language.[13]

SBDD is also important to derive structure-activity 
relationships of a chemical series, especially in the lead 
optimization phase, when very accurate modifications 
are needed to adjust an ADME/tox profile while main-
taining binding affinity.

All VS methods have their strength and pitfall, over 
the time many improvements have been obtained. In 
the last decades, Artificial Intelligence (AI) methods ap-
peared in the panel of new strategies.

3. AI METHODS IN VS

Computer science advances and speeds find AI 
broadly benefitting several fields. AI refers to an algo-
rithm capable of mimicking cognitive functions without 
supervision or user input.

In pharmaceutical research, because of the complex 
nature of big data, some relations may not be appar-
ent at first glance and might lead to wrong results or 
hypotheses.

Among AI methods, machine learning (ML), and 
in particular deep learning (DL) using deep neural net-
works (DNN), has been responsible for recent progress.
[22, 23] DL involves scaling machine learning using 
multi-layered neural networks to attempt to model the 
abstraction of big data.

However, because of the poor interpretability of AI 
methods, and the limited accuracy of prediction results 
for molecules with large structural differences from the 
training compounds, HTVS rather than DL methods 
remain the dominant choice in drug design.[19]

Of course, their application is growing and many 
studies showed interesting results,[24] but particular at-
tention should be given to data collection and cure.[25]

Great efforts are being made to produce better al-
gorithms. Nevertheless, software is not (yet) meant to 
replace chemical intuition or deep knowledge of the 
biological target, which is essential for the identification 
of hits. 

The combination of ligand- and structure-based 
methods has become a common approach in virtual 
screening since it has been hypothesized that their inte-
gration can enhance the strengths and reduce the draw-
backs of each method.

4. PITFALL AND CHALLENGES

The druglike chemical space is estimated to be 
around 1063 molecules.[26] However, a drug candidate 
needs to possess the right combination of properties 
to provide efficacy and safety, and formulation. Only a 
small fraction of chemical compounds possesses these 
properties. Furthermore, accessible synthetic pathways 
of compounds and purchasability are not guaranteed. 
This would make the use of virtual libraries more 
appealing.[27]
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The sizes of screenings databases range from a few 
thousand (e.g. DrugBank) to almost one hundred mil-
lion (e.g. Pubchem). But, are bigger screenings better?[28] 

Of course, a large database gives more chance of 
finding new scaffolds, but the analysis of published 
works highlighted the interesting conclusion that even 
less complex studies can lead to success stories.[29] This 
is encouraging for small labs where, albeit the access to 
thousands of CPUs/GPUs also via the cloud is feasible, 
the cost of thousands of licenses for virtual screening 
software may be unaffordable.

CADD still faces many challenges, which include 
increasing the efficiency of virtual screening; further 
developing the computational chemogenomic field; pre-
dictive animal models, more attention for earlier toxi-
cology evaluation, data curation, and quality. 

Moreover, there is a large room for improvement on 
studies that involve multiple molecular targets, for both 
synergy and side effect prediction.[30] In fact, many 
studies suggest that the partial inhibition of a small 
number of targets, involved in a specific disease, can be 
more efficient than the complete inhibition of a single 
target. In this regard, VS that consider the polypharma-
cology aspect might solve the problem of fighting chal-
lenging diseases by retrieving more efficient weapons.

5. CONCLUSIONS

Researchers are currently attacking diseases of great 
complexity such as virus infections, cancer, and neuro-
degenerative disorders. Furthermore, drug targets being 
tackled include a growing number of less druggable tar-
gets than those pursued previously. In addition, the en-
try bar for new drugs is becoming higher because of the 
enhanced standard of care. Indeed, the VS approaches 
can help the DD process. However, the awareness of 
how a method can fail is as useful as knowing how it 
works. Hence, it is mandatory to maintain a critical at-
titude when dealing with results. The VS success rate 
may vary considerably, depending on the target and 
the expertise of the user. But, if a “first-in-class hit” or a 
novel scaffold is identified, it should be considered as a 
success, regardless of its potency. Therefore, the recom-
mendation is to pursue VS for DD, even on a relatively 
small scale.
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