
246

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2022-246-253

Vojislav Tomašević1,
Marko Mišić1,
Violeta Tomašević2*

1School of Electrical Engineering,
 Belgrade, Serbia

2Singidunum University,
 Belgrade, Serbia

Correspondence:
Violeta Tomašević

e-mail:
vitomasevic@singidunum.ac.rs

SOFTWARE SYSTEM FOR SIMILARITY DETECTION IN THE
PICOCOMPUTER ASSEMBLY PROGRAMS

Abstract:
This paper tackles the problem of plagiarism in an academic environment with
an emphasis on the detection of similarities between the source codes from stu-
dent assignments in the programming courses. The detected similarity in these
codes greatly helps a human expert to bring the final decision on which codes
are plagiarised and to which extent. Since the manual comparison of the source
codes is a tedious task, the system for automatic detection of similarities in the
assembly programs written for the picoComputer architecture is envisioned and
implemented. It relies on the application which first performs the scanning and
tokenization of the source codes. The pair-wise similarity detection is carried out
by the Greedy String Tiling algorithm upgraded with the hash-based Karp-Rabin
modification. A convenient GUI is also provided for efficient communication for
the users and the choice of necessary parameters. Two different approaches are
pursued in the testing and evaluation of the system. The first test set consists of
a starting program with several versions with intentional modifications to simu-
late plagiarism. The second test set represents a real workload which comprises
250 real source codes from the student assignments. In both cases, the system
demonstrated good efficiency.

Keywords:
plagiarism, similarity detection, picoComputer architecture, tokenization,
RKR-GST algorithm.

INTRODUCTION

Nowadays, information and knowledge are easily and widely accessi-
ble more than ever, either in paper form or in various electronic forms on
the Internet. It is one of the reasons for increasing evidence of unethical
conducting in producing different kinds of work (books, papers, source
codes, etc.), partly or entirely, and presenting some others’ work as own
[1]. In order to fight against plagiarism, various tools are developed and
exploited to detect the similarities of the submitted works, such as JPlag
[2] and Moss [3] for source code similarity detection, or TurnitIn iThen-
ticate [4] for text-based plagiarism.

INFORMATION SYSTEMS AND SECURITY SESSION

http://sinteza.singidunum.ac.rs
https://doi.org/10.15308/Sinteza-2022-246-253

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Information Systems and
Security Session

247

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

In an academic environment, the problem of pla-
giarism is extremely important and sensitive. Such a
practice directly and adversely affects the regularity
of acquiring academic diplomas and positions. In the
university teaching practice, there is an apparent need
to check for the plagiarism of the students’ final thesis,
homework, assignments, projects, etc [5]. This paper
deals with the problem of similarity detection of the stu-
dents’ source codes written to fulfil their assignments in
the programming courses. There are several malprac-
tices that students conduct in such cases. Some of them
take parts of the code or the entire code from the online
sources. However, the students not rarely tend to copy
the works of their colleagues, as exact solutions of the
appointed problems in student assignments cannot be
always found online. Some of them perform lexical and
structural modifications in the code intended to hide the
plagiarism from the examiner. We had in mind all those
scenarios during the development of this system.

It is worth mentioning that, in this context, a similar-
ity of the two codes does not necessarily imply plagia-
rism. Namely, especially in the first-year programming
courses, during solving the appointed problems less ex-
perienced students frequently apply the templates and
ideas recommended by their teachers. Consequently, a
certain level of code similarity can be expected and al-
lowed to some extent. Also, if a part of the project is
already implemented and the students are supposed
to build upon it, a similarity is inevitable. Therefore,
extreme caution is necessary and the software tools for
similarity detection only raise some kind of indication
about possible plagiarism. The final decision of whether
some work is plagiarised or not is always brought by a
human examiner [6].

For the purpose of exposing the concept of low-level
programming in the introductory programming course
at the University of Belgrade, School of Electrical Engi-
neering, the students are taught to write the programs
in the assembly language for an educational hypotheti-
cal architecture – picoComputer. It imposed a need for
an appropriate software system for similarity detection
of the source codes submitted as homework solutions.
Such system is based on the Greedy String Tiling algo-
rithm for similarity detection augmented with Karp-Ra-
bin modification (RKR-GST). The system is successfully
implemented and evaluated.

Following this introduction, the second section pre-
sents a brief overview of the picoComputer architecture,
to have an impression of the complexity of demands for
the system to fulfil.

The third section describes the structure of the simi-
larity detection application and the GUI along with
some implementation details. After that, the system is
evaluated by performing some representative tests, and
the results of the evaluations are analyzed in the fourth
section. Finally, the paper concludes with a summary of
the work done and a proposal of the future work.

2. THE picoComputer ARCHITECTURE

The educational computer architecture picoComputer
(pC) is developed by prof. J. Dujmović in 1989 [7]. The
goal was to conveniently introduce the students at the
School of Electrical Engineering to the basic principles
of the computer architecture and programming in an
assembly language. Being a minor part of an introduc-
tory course, the architecture was quite restrictive, as im-
plied by the prefix pico.

pC is a 16-bit machine with the three-address in-
struction format, as an instruction consists of the op-
eration code (4-bit) and up to 3 operand fields (4-bit
each – one bit for the addressing mode and 3-bit for the
address). The instructions are either one-word (16b) or
two-word (32b). The main memory of 64K 16-bit words
is logically divided into the fixed area (0-7) and free area
(rest of the address space). All addresses are 16-bit long.
The fixed area accommodates only directly accessible
data, while program and indirectly accessible data reside
in the free area. There is a system stack that occupies the
top of address space and grows downwards. The layout
of the main memory address space is shown in Figure 1.

Fixed area

Free area

0

8
7

65535

...

Program

Data

Stack
...

Figure 1 – The main memory address space.

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Information Systems and
Security Session

248

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

In the pC architecture, the programmer can use three
memory addressing modes:

1) Direct memory addressing – an operand resides
in the fixed area, as only locations 0 to 7 can be
addressed with 3-bit address;

2) Indirect memory addressing – the address of an
operand resides in the fixed area, while the oper-
and itself can reside anywhere in the main mem-
ory because of the 16-bit address;

3) Immediate addressing – an operand is a 16-bit
constant found in the second instruction word.

The instruction set of the pC assembly language
encompasses four typical groups of instructions:

1) Data transfer instruction (MOV) – enables the
one-word memory-to-memory transfer or load-
ing the constant to memory, or copying a con-
tiguous memory block of data from source to
destination, as well;

2) Arithmetic instructions (ADD, SUB, MUL, DIV)
– enable the basic four arithmetic operations (ad-
dition, subtraction, multiplication, division);

3) Control instructions – there are three subgroups:
conditional branch instructions (BEQ – condi-
tion is equality of the two operands, and BGT

- condition assumes that the first operand is
greater than the second), subroutine handling
instructions (JSR for a subroutine call and RTS
form a return from subroutine), and instruction
for ending the program execution (STOP);

4) Input/Output instructions (IN, OUT) – enable the
communication of a user and the program – in-
put data entry from the keyboard and display of
output data on the monitor.

There are also two assembler directives for defining
the symbolic constants and determining the layout of
the program in the memory address space.

3. THE SIMILARITY DETECTION SYSTEM

The system consists of two components [8]:
 ◆ the command-line similarity detection applica-

tion implemented in C++,
 ◆ graphical user interface (GUI) implemented in

Java.
The flow diagram of activities within the imple-

mented system for similarity detection of the source
programs written in the pC assembly language is
presented in Figure 2.

Start

End

Data input

Fetching the programs
being compared

Selected a pair of
programs?

Scanning and
tokenization

Creation of the vector of
hashes and hash table

Similarity detection by
RKR-GST

Similarity calculation in
percents

Updating of output files Displaying of
output files

yes

no

Figure 2 – The similarity detection system flow chart.

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Information Systems and
Security Session

249

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

3.1. THE SIMILARITY DETECTION ALGORITHM

The algorithms for similarity detection usually apply
a range of different approaches (strings, tokens, pars-
ing trees, dependency graphs, various metrics, etc.) [9].
In an academic environment, a lower level of detection
is regarded as effective since the functional similarity is
quite expected in the student source codes. Also, those
methods are much more effective in the case of large code
repositories, which is common in an academic environ-
ment Therefore, in comparing the student assignments
the similarity detection techniques are usually based on
tokenization and string matching. A representative and
widely used algorithm which relies on these two concepts
is the Greedy String Tiling (GST) algorithm [10].

This algorithm performs searching for matchings in
the two strings. It was firstly applied for DNA sequences
matching, but also proved viable for the source code pla-
giarism detection, as well. It considers only matching
of the sequences of the length no less than the MML
(minimum matching length). The one-to-one matching
is guaranteed and changing the positions of the matched
subsequence would not affect the detection. The longer
matchings are favored over the shorter ones since they
are considered as better indicators of similarity.

The GST consists of the two phases which are ex-
ecuted iteratively until no one new matching longer
than MML can be found. It incurs rather significant
time complexity between O(n2) and O(n3). In order
to decrease the time complexity of the GST algorithm,
the Karp-Rabin modification is used which reduces the
time-consuming character-based matching by the use of
hashing. The rolling hash function calculates the hashes
of substrings, and substrings with the same hash value
are matched. This algorithm is known as Running Karp
Rabin Greedy String Tiling (RKR-GST) [11].

3.2. THE SIMILARITY DETECTION APPLICATION

The application compares the similarity for each pair
of files with the source codes written in the pC assembly
language from a given data set. It is implemented in
the C++ programming language under Linux Ubuntu
operating system.

The similarity detection is carried out in three phases:
1. Scanning and tokenization of a source program;
2. Hashing;
3. Running of the RKR-GST algorithm (with some

potential optimizations).

The token set is based on the pC assembly language
instruction set. It consists of 15 different tokens. Twelve
tokens are based on instructions, one token for each
instruction. Three additional tokens are introduced to
model the labels and pC assembly language directives.
The token set is chosen to balance both robustness to
source code modifications and the precision of the sys-
tem.

Phase 1: For the scanning process, the main class is
Scanner with its methods scan (which scans an entire
input file) and scanLine (which is called from the scan
method for each text line of the input file to scan it).

The scanLine method firstly eliminates every blank,
non-ASCII character (when writing in Notepad, espe-
cially on Windows OS, so-called BOM characters are
inserted), as well as the comments from the entry text
line. Then, the presence of the label at the beginning of
the filtered line is checked. If the label exists, a new to-
ken is inserted into the token list which represents the
output of the scanning process. Finally, the method
tries to match the rest of the text line with some of the
regular templates (pattern, regex). In case of a successful
match, an appropriate token is added to the token list.
One token from the token list is added for each regular
expression.

Token and TokenList are the classes that represent
the token and token list items, respectively. The Token
class contains appropriate member fields for token
identification, for its location in the original file, and for
keeping whether the token is marked or not. The Token-
List class represents the list of tokens generated in the
tokenization of one file, and such a list is used as one of
two input strings in the RKR-GST algorithm. This class
also contains the member fields related to hashing. The
token list is implemented as a vector (vector type in C++
STL library) of pointers to objects of the Element class
which, along with the pointer to the corresponding ob-
ject of the Token class, contains also its ordinal number
in the token list.

Phase 2: After the scanning and creation of the token
lists for both programs are completed, the static create-
HashesForTokenList method of the KarpRabinGST class
is called. It is a wrapper around the fillHashes method
of the TokenList class. This method is responsible for
generating the hashes of all consecutive substrings of
the MML length for the tokenized program. The rolling
hash function is used for this purpose. The chosen value
of the base is 17 since it is the first prime number higher
than the number of tokens (15).

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Information Systems and
Security Session

250

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

During the generation of the hash values, they are
also included in a vector of hashes and in the map hash
table. These two structures are the member fields of the
TokenList class and they have a role in the execution of
the RKR GST algorithm. The map hash table is organ-
ized as an unordered_map structure from the C++ STL
library. In this structure, each hash is connected with a
vector of initial positions of all substrings corresponding
to that hash value.

Phase 3: After the vector of hashes and the hash
table for tokenized representations of both files under
comparison are created, the static runGST method of
the KarpRabinGST class is called. The input arguments
of this method are the token lists for both files, the ac-
curacy level of the similarity detection (the optimization
level of the algorithm), and the value of MML. The out-

put of the method is the vector of pointers to the objects
of the Match class which contains the information about
one matched substring (indices of the first substring to-
ken in the token lists for both files and the number of
tokes in the matched substring). This method contains
the implementation of the RKR-GST algorithm itself.

3.3. THE GUI SUBSYSTEM

For the purpose of the interaction with users, a Java
application in Eclipse development environment is im-
plemented using Java SE11. It is packed in the .jar file
in order to enable the execution independently on the
platform used. The appearance of a part of GUI is shown
in Figure 3.

Figure 3 – An example of GUI.

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Information Systems and
Security Session

251

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

It can be seen that a user should fill several fields and
choose some options before starting the execution of the
similarity detection algorithm. The first field requires the
entry of an absolute path to the execution file of the C++
application. The JFileChooser GUI component enables
the choice of the execution file. Click on the Dodaj fajl
button opens a dialog box where the desired file can be
found and chosen or the path to the file can be manu-
ally entered.

The next three text fields are automatically filled with
the directory part of the execution file path if it is select-
ed using Dodaj fajl button. These three fields are used
for entering absolute paths of: a) all files which should
be checked for possible similarity, b) the file which rep-
resents the main system output, and c) the file which
presents detailed information about the results of the
similarity detection.

Below four text fields, there is a text area (JTextArea)
where a user enters the absolute paths of all files (one file
per line of entry) meant for similarity detection. This
entry can be either manual or by using open dialog initi-
ated with a click on the appropriate button.

Besides that, the user has to select the value of MML,
one of the basic parameters of the RKR-GST algorithm.
Only three values (3, 4, 5) are offered since a lower value
would lead to some random matchings, while a higher
value would be too restrictive having in mind that stu-
dent pC assembly programs are relatively short. Finally,
a level of precision in similarity detection must be chosen.

After all parameters and files names are specified, the
execution of the RKR-GST algorithm is started by click-
ing the button on the bottom of the frame.

The main output result is stored in a file that con-
tains the percentage of similarity for all pairs of files
(‘each with each’) submitted for the similarity detection.
An additional output result is a file with information
about the token set used for tokenization in the RKR-
GST algorithm, the starting positions of all matched
subsequences in both files, and their lengths. The result
of matching is provided from each pair of files.

4. TESTING OF THE SYSTEM

The system for similarity detection was tested using
two different data sets:

1) Manually created set of the testing examples
(simulation of plagiarism);

2) Real data set consisting of 250 student assign-
ments.

In the first case, starting with the reference assembly
program prog_v0.pca, three new programs, semanti-
cally equivalent to the reference one, are created. The
intentional lexical and structural modifications are in-
troduced in these three versions in order to hide plagia-
rism. A different time is spent for these modifications
intended to deceive the system, so one hour was needed
for prog_v1.pca, two hours for prog_v2.pca), and four
hours for prog_v4.pca. Table 1 presents the results of the
simulation for the given MML values and a high level of
detection precision.

Comparison Similarity (%)

First program Second program MML = 3 MML = 4 MML = 5

prog_v0.pca prog_v1.pca 87.7551 81.6327 73.4694

prog_v0.pca prog_v2.pca 69.0909 52.7273 38.1818

prog_v0.pca prog_v4.pca 53.913 33.0435 26.087

prog_v1.pca prog_v2.pca 78.1818 72.7273 58.1818

prog_v1.pca prog_v4.pca 59.1304 48.6957 27.8261

prog_v2.pca prog_v4.pca 83.4646 83.4646 77.1654

Table 1 - The results of the plagiarism simulation.

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Information Systems and
Security Session

252

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Group
Similarity (%)

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Group 1 0 4 37 123 100 31 4 1 0 0

Group 2 0 6 47 109 99 33 6 0 0 0

Group 3 0 8 46 114 95 30 6 1 0 0

Group 4 0 7 55 110 81 35 12 0 0 0

Group 5 0 1 22 108 111 48 7 3 0 0

Group 6 0 3 46 122 85 36 4 4 0 0

Group 7 0 2 25 96 115 49 11 2 0 0

Group 8 0 6 53 103 95 36 7 0 0 0

Group 9 0 3 48 125 87 34 1 2 0 0

Group 10 0 1 21 108 114 47 7 1 1 0

Total 0 41 400 1118 982 379 65 14 1 0

Table 2 - The results of the testing on a real data set

It can be seen from the table that the similarity scores
are higher in the consecutive code versions. Differences
between versions 0 and 1 are basically in the lexical
changes and the RKR-GST algorithm can mainly detect
them. The high similarity of versions 2 and 4 can be ex-
plained by somewhat fewer modifications done in the
last two hours. Because of the simplicity of the pC as-
sembly language, the number of possible modifications
is limited. For MML = 3 the similarity percentage be-
tween the original and final version exceeds 50% which
evidences that although the significant success in hiding
the plagiarism can be achieved in four hours, it is still
insufficient to fully remove the doubt about the possible
plagiarism.

In the case of the real data set, it was not known in
advance which programs were plagiarised and which are
not. The data set of 250 student assignments is grouped
into 10 groups (25 assignments per group). The com-
parisons on similarity are performed for each pair in
a group (300 comparisons per group). Obtained per-
centages of similarity are classified into 10 ranges (10%
each). Table 2 presents the obtained results for MML =
3 and a high level of detection precision.

It is evident that the percentage of similarity in sev-
eral groups is relatively high, which raises the doubts
about plagiarism. These are candidates for more careful
manual examination by the instructor.

5. CONCLUSION

Contemporary information systems and wide ac-
cessibility to various kinds of knowledge have made the
possibility of plagiarism easier than ever. Often some
students in fulfilling their assignments cannot resist
using the results of others’ work, especially in the pro-
gramming courses. In order to detect the similarities of
the source codes written in the picoComputer assembly
language, an appropriate similarity detection system
is developed at the University of Belgrade, School of
Electrical Engineering. The application written in C++
for finding the similarities is based on the well-known
Greedy String Tiling algorithm. In order to decrease its
time complexity, the algorithm is extended with Karp-
Rabin modification based on the rolling hash function.
The GUI written in Java is also supplied for choosing the
input data set and flexible choice of parameters. The sys-
tem is successfully tested using two data sets: artificially
simulated plagiarism of different levels in an example
program and real data set consisting of 250 student as-
signments from an ongoing university course.

There are several avenues for prospective future
work. By modification of the front-end part (scanning
in the first phase), this system can be adapted for simi-
larity detection in some other language. Also, the system
is quite flexible and can be ported to a different platform
(e.g., Windows). Finally, with an aim to increase its pre-
cision, some other token set can be envisioned which
takes into account not only the instruction mnemonics

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Information Systems and
Security Session

253

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

but also the addressing modes of the operands. The
choice of a token set could be one of the parameters of
the system.

6. REFERENCES

[1] “What is Plagiarism?,” 18 May 2017. [Online].
Available: https://www.plagiarism.org/article/what-
is-plagiarism. [Accessed 20 March 2022].

[2] L. Prechelt, G. Malpohl and M. Philippsen, “Find-
ing plagiarsms among a set of programs with JPlag,”
Journal of Universal Computer Science, vol. 8, no. 11,
pp. 1016-1038, 2002.

[3] S. Schleimer, D. S. Wilkerson and A. Aiken, “Win-
nowing: local algorithms for document fingerprint-
ing,” in ACM SIGMOD international conference on
Management of data, 2003.

[4] “TurnitIn iThenticate,” [Online]. Available: https://
www.turnitin.com/. [Accessed 23 March 2022].

[5] M. J. Mišić, J. Ž. Protić and M. V. Tomašević, “Im-
proving source code plagiarism detection: Lessons
learned,” in 25th Telecommunication Forum (TEL-
FOR), IEEE, 2017.

[6] F. Culwin and T. Lancaster, “Visualising intra-cor-
pal plagiarism,” in Fifth International Conference on
Information Visualisation, IEEE, 2001.

[7] J. J. Dujmović, Programski jezici i metode pro-
gramiranja, Beograd: Akademska misao, 1991.

[8] V. M. Tomašević, “Softverski sistem za detekciju
sličnosti u asemblerskom kodu picoComputera,”
Elektrotehnički fakultet, Beograd, 2021.

[9] M. Novak, M. Joy and D. Kermek, “Source-code
Similarity Detection and Detection Tools Used in
Academia: A Systematic Review,” ACM Transac-
tions on Computing Education (TOCE), vol. 19, no.
3, p. 27, 2019.

[10] M. J. Wise, “Detection of Similarities in Student Pro-
grams: YAP'ing may be Preferable to Plague'ing,” in
Twenty-Third SIGCSE Technical Symposium, Kan-
sas City, USA, 1992.

[11] M. Wise, “Running Karp-Rabin matching and
greedy string tiling,” Basser Department of Com-
puter Science, University of Sydney, 1993.

http://sinteza.singidunum.ac.rs

