
163

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2022-163-168

Luis de la Torre1*,
Milan Matijević2,
Đorđe Seničić3,
Maja Milojević4,
Marko Tanasković5

1UNED, Calle Juan del Rosal,
 Madrid, Spain

2Faculty of Engineering at
 University of Kragujevac,
 Kragujevac, Serbia

3Cognipix D.O.O. Belgrade,
 Belgrade, Serbia

4University of Belgrade –
 Faculty of Physical Chemistry,
 Belgrade, Serbia

5Singidunum University,
 Belgrade, Serbia

Correspondence:
Luis de la Torre

e-mail:
ldelatorre@dia.uned.es

A SUMMARY PROTOCOL ON HOW TO DEVELOP A REMOTE
LABORATORY

Abstract:
Web Laboratories (weblabs) have proven to be a fantastic tool for teaching and
learning, especially, as a complement to traditional hands-on labs in technical,
engineering and science fields. Unfortunately, designing and implementing a
weblab is usually not an easy nor a quick task, making this kind of resources
difficult to find in many university courses. Therefore, an effort to educate our
educators on how to create weblabs, so they can add them to their courses, is
required. The Erasmus+ KA RELAB project is aware of this lack, and so, one of
its main objectives is to address this problem. This paper is a result of the work
done within the RELAB project. Here, we provide a summary protocol that
makes it easier for teachers wanting to develop their weblabs to start doing so.

Keywords:
Remote labs, lab work, online education, engineering education.

INTRODUCTION

Experimentation plays an essential role in engineering and scientific
education. Whereas traditional hands-on labs offer students opportuni-
ties for experimentation with real systems (they provide “actual experi-
ence”), they involve high costs associated with equipment, space, and
staff for maintenance [1]. To minimize those costs, remote labs, or we-
blabs, use real setups which can be used at a distance (see Figure 1). In
addition to reducing costs, weblabs the following benefits [2]:

1.	 Availability: VRLs can be used from anywhere at anytime, thus
they support students geographically scattered, who besides are
conditioned to different time zones.

2.	 Accessibility for handicapped people.
3.	 Observability: lab sessions can be watched by many people or

even recorded.
4.	 Safety: VRLs can be a better alternative to hands-on labs for dan-

gerous experimentation.

ADVANCED ENGINEERING SYSTEMS AND SOFTWARE DEVELOPMENT SESSION

http://sinteza.singidunum.ac.rs
https://doi.org/10.15308/Sinteza-2022-163-168

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Engineering Systems and
Software Development Session

164

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Despite their advantages, few teachers and institu-
tions actually use weblabs as a common way to comple-
ment their traditional hands-on activities [3]. One of the
main reasons for this is that weblabs have been tradi-
tionally hard and time consuming to develop. Moreover,
they require a mix of skills (programming, communica-
tions, hardware setup, etc.) which makes it difficult for
single persons or small teams to cover.

Therefore, this paper presents a comprehensive pro-
tocol with the steps to follow and the tools to use when
facing the challenge of developing a weblab for the first
time. This does not pretend to be a full step-by-step
guide, nor to cover all the possible architectures, solu-
tions and tools that can be used and applied for the task.
For example, desktop-type access for weblabs (which
have their own difficulties and risks) is not considered
in this work. Instead, it just pretends to give a reasonable
starting point for those wanting to develop and deploy
their first weblab.

2.	 SUMMARY PROTOCOL

We can divide the process of designing, developing
and using weblabs into four main considerations [4]: 1)
security and communication issues, 2) the server-side
development, implementation and/or integration, 2) the
client-side development and implementation, and 4) the
deployment of the weblab app into an online course. The
next subsections tackle each of them.

2.1. SECURITY & COMMUNICATIONS

Usually neglected, security and communications is-
sues with weblabs are extremely important, and, some-
times, difficult to address. It is also the first thing that
should be considered when developing a weblab, as the
decisions made in this phase will likely affect how to de-
velop the other ones.

The following are the most common sources of
threats related to webLabs, and the risks associated with
them, followed by the basic recommendations to avoid
them:

	◆ Risk: Equipment (cameras, computers, switches,
etc.) use public IPs. When the lab devices use
public IPs, they are visible and reachable to an-
yone. While this is a very handful solution for
exposing the lab services and making them acces-
sible, it also carries a huge risk, as any user or bot
can try to access such devices. Recommendation:
Use private IPs within a VLAN/VPN that is pro-
tected and allows you to control who may access
which resources within the private network.

	◆ Risk: WebLab services do not use an authentica-
tion system. Sometimes, weblabs are left open, so
anyone can access them. This may be done either
by design or by mistake, but in both cases, mali-
cious users may take control of the lab and make
bad use of it, potentially harming the equipment,
monopolizing it and preventing others from us-
ing it. Or simply, access to cameras that should
not be available to everyone at any time. Recom-
mendation: Always use an authentication system
at the communications protocol level. Using
authentication for accessing a webpage is not

Figure 1 – Basic architecture of a weblab.

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Engineering Systems and
Software Development Session

165

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

enough, as users may be able to access the web-
page at some point, load a web app and keep it
open and running if no security is implemented
at the communications protocol level. Users may
even be able to download the app and keep using
it whenever they want, without having to log in
and authenticate in the webpage never again.

	◆ Risk: Services not running over HTTPS. Even
when an authentication mechanism is in place,
if such mechanism does not rely on HTTPS, se-
curity is at risk due to the use of unencrypted
transport of the credentials. Recommendation:
Always install an SSL certificate to enable the use
of HTTPS and encrypted communications.

2.2. SERVER-SIDE DEVELOPMENT, IMPLEMENTATION
AND/OR INTEGRATION

The server-side development for a weblab usually
has to solve connecting a computer (whether a desktop
computer or a single board computer) with real hard-
ware, in the form of actuators, sensors, etc. This can be
done through various hardware (Arduino, Raspberry,
Data Acquisition Cards, PLCs, etc) and software (Lab-
VIEW, Beckhoff, Matlab, Python, etc.) solutions. This
work does not address the hardware part, as this is ex-
tremely dependent on the type of experiment to be pre-
pared and the resources that are available or at reach.

For the software part, we focus on two well-known
solutions (LabVIEW and Python), both equally valid
and easy to connect to a web-app in HTML5.

The use of LabVIEW is recommended for those who
have a license and can use the software, as there are good
chances the lab hardware that needs to be connected for
the weblab already has a LabVIEW interface and/or API.
Python is recommended for any other situation, as it
presents a high degree of interoperability and connectiv-
ity, making it ideal for most applications. Two common
architecture situations and lab setups supported by these
two implementations of RIP are illustrated in Figure 2.
Both scenarios can be addressed using a middleware that
enables the communication between a client application
(see next section) and any software in the lab operat-
ing the experimental setup. This middleware is called
RIP [5] and can be downloaded for free in both of its
implementations: LabVIEW (https://github.com/UN-
EDLabs/rip-labview-server) and Python (https://github.
com/UNEDLabs/rip-python-server). While the instal-
lation and configuration to make them work with each
particular lab setup and the software used to operate
it, differ for these two, instructions can be found when
downloading RIP. In any case, once the installation and
configuration is completed, both versions would start
exposing your lab inputs and outputs as web services,
using the exact same protocol. Listing 1 presents a ge-
neric JSON example response, provided by RIP, to an
HTTP request.

Figure 2 – Two typical weblab implementations supported by RIP.

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Engineering Systems and
Software Development Session

166

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

For the sake of simplicity and briefness, the methods
in the outputs and inputs fields are not included. How-
ever, they contain all the information a client needs to
create REST calls to: 1) subscribe for getting updates on
the values of the outputs, and 2) send requests for writ-
ing/modifying the inputs. Interested readers can find

all the details in [5]. This information, and the available
methods, published as webservices by RIP, to write a
new value in an input variable and read the value of an
output variable, is all a client app needs to actually oper-
ate the lab from the web and thus, transform the tradi-
tional lab into a weblab.

{
 "outputs": {
 "list": [
 {
 "name": "output_1",
 "description": "description_output_1",
 "type": "type_output_1",
 "min": "min_output_1",
 "max": "max_output_1",
 "precision": "precision_output_1"
 },
 // ... ,
 {
 "name": "output_N",
 "description": "description_output_N",
 "type": "type_output_N",
 "min": "min_output_N",
 "max": "max_output_N",
 "precision": "precision_output_N"
 }
],
 "methods": [{ //... }]
 },
 "inputs": {
 "list": [
 {
 "name": "input_1",
 "description": "description_input_1",
 "type": "type_input_1",
 "min": "min_input_1",
 "max": "max_input_1",
 "precision": "precision_input_1"
 },
 //... ,
 {
 "name": "input_M",
 "description": "description_input_M",
 "type": "type_input_M",
 "min": "min_input_M",
 "max": "max_input_M",
 "precision": "precision_input_M"
 }
],
 "methods": [{ //... }]
 }
}

Listing 1 - An example of RIP response to an HTTP request.

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Engineering Systems and
Software Development Session

167

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

2.3. CLIENT-SIDE DEVELOPMENT & IMPLEMENTATION

The client-side development tackles with creating the
HTML5 web application that would allow students to
interact with the remote lab assets. This usually includes
buttons, sliders, graphs, input fields and/or a video
stream of what is going on in the lab room.

Any HTML + Javascript + CSS programming could
give a weblab HTML5 app as a result, but the amount
of work to program this from scratch is considerable.
Other solutions, such as using Unity or similar web-
friendly engines, are also possible, but the same problem
remains. Here, we propose the use of EjsS [6] for this
task, as it is a tool specially designed to make the task
easy and, furthermore, anyone can download it and use
it for free.

Web applications developed in EjsS can be either
simulations or remote lab interfaces. When the app is
a remote lab interface, the communication with the lab
hardware/software can be easily implemented using a
RIP client, which is already included in EjsS as an EjsS
element. Readers needing a tutorial on how to use EjsS
can find one at [7].

As a very brief introduction to EjsS elements, it is
enough to say that these elements are added to an EjsS
app by choosing the Model tab and then dragging one
element icon from the palette (in the right part of the
EjsS editor) into the model elements list (in the left part
of the editor). Then, it is enough to double-click the new
element to set its properties. Once created, users can call
the element's methods in their app code to operate with
the element. In the case of the RIP element, the three
main methods to be used are:

	◆ connect(): To connect the client web app with
the RIP server and enable communication with the
lab hardware. It is required to call this method and
wait for its response before using the following
two. It is important to note that RIP does not pro-
vide any authentication mechanism and therefore,
this security aspect must be addressed somehow,
usually at the VPN level (see section 2.1).

	◆ [value_i, value_k] = get([output_i,
…, output_k]): To obtain the values of the
specified output variables.

	◆ set([input_l, …, input_m], [value_l,
…, value_m]): To write the specified new values
in the specified input variable.

As simple as they are, these three methods provide
all the necessary functionalities to communicate with
the lab and thus, build a web app that is interactive and
allows users to work with the lab equipment remotely.
Once the web app is finished, EjsS provides an option to
put all the files associated with this HTML5 app (.html,
.js and .css files) inside a single .zip file and the only task
that remains is to deploy it into an online course so that
students can use it.

2.4. DEPLOYMENT

While the work required on the server side is a must
in order to setup a weblab, it is the client web application
the one that needs to get deployed in an online course
to make it accessible to the students and enable them to
perform their lab tasks.

As with all the previous tasks, this can be done in
several ways. Here, we focus on using a Moodle plugin
called EJSApp (which can be downloaded for free from
[8]) to enable their easy integration into this Learning
Management System (LMS). While this seems to limit
its use solely to the case when the institution/teacher
uses this LMS, this is not true. First of all, Moodle is
open-source software that can be downloaded and used
for free. Therefore, anyone could adopt it. Equally im-
portant, however, is that any activity embedded into a
Moodle course (and this includes weblabs integrated
through EJSApp) can be shared with other LMS through
the Learning Tools Interoperability (LTI) standard [9],
supported by all current major LMS. Therefore, once a
weblab is embedded in a Moodle system, it can be shared
with virtually any institutional platform and used from
their online courses. The process for sharing a weblab
from Moodle with another LMS follows the LTI stand-
ard for sharing any other learning tool, and instructions
about how to do this can be found in the Moodle docs or
in the target LMS platform documentation.

Once EJSApp is installed in Moodle (the instructions
for this can be found in the plugin’s download webpage
or in the Moodle docs) embedding a web lab created
with EjsS in Moodle becomes extremely easy. Figure 3
shows the web form to add or edit an activity with an
EjsS app (EJSApp). The only two fields that need to be
filled are the name of the activity and the .zip file that
encapsulates the EjsS application.

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Engineering Systems and
Software Development Session

168

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

3.	 CONCLUSION

This work summarizes the protocol and recommen-
dations given in the RELAB’s Intellectual Output 6. Fol-
lowing these guidelines, teachers can start getting famil-
iarized with designing, creating and deploying a weblab,
as well as with the software tools they can use to do so.

By making the learning curve more accessible and
lowering the barriers for the entry point to develop we-
blabs, we expect to contribute to popularize this type of
labs which have already demonstrated their usefulness
and effectiveness in science and engineering education.

4. ACKNOWLEDGEMENTS

This work has been funded by the ERASMUS+
KA226 project 2020-1-RS01-KA226-HE-094550 “Re-
pository of Open Educational Resources for Laboratory
Support in Engineering and Natural Science – RELAB“,
which is gratefully acknowledged.

5. REFERENCES

[1] 	 L. Bogosyan and S. Gomes, "Current trends in re-
mote laboratories," IEEE Trans. on Industrial Elec-
tronics, vol. 56, no. 12, p. 4744–4756, 2009.

[2] 	 C. Gravier, J. Fayolle, B. Bayard, M. Ates and J. Lar-
don, "State of the art about remote laboratories para-
digms - foundations of ongoing mutations," Interna-
tional Journal of Online Engineering, vol. 4, 2008.

[3] 	 R. Heradio, L. d. l. Torre and S. Dormido, "Virtual
and remote labs in control education: A survey,"
Annual Reviews in Control, vol. 42, pp. 1-10, 2016.

[4] 	 Erasmus+ KA 2 Project RELAB, Intellectual Out-
put 6. Available online: https://relab.kg.ac.rs/publica-
tions/uned/weblab/, 2022.

[5] 	 L. d. l. Torre, J. Chacon and D. Chaos. [Online].
Available: https://github.com/UNEDLabs/rip-spec.
[Accessed 31 03 2022].

[6] 	 F. Esquembre, "Easy Javascript Simulations," [On-
line]. Available: https://www.um.es/fem/EjsWiki/.
[Accessed 31 03 2022].

[7] 	 L. d. l. Torre and R. Heradio, "EJSApp repository in
GitHub," [Online]. Available: https://github.com/UN-
EDLabs/moodle-mod_ejsapp. [Accessed 31 03 2022].

[8] 	 IMS Global, "Learning Tools Interoperability," [On-
line]. Available: https://www.imsglobal.org/activity/
learning-tools-interoperability. [Accessed 31 03 2022].

[9] 	 F. Esquembre, "Easy Javascript Simulations," [On-
line]. Available: https://www.um.es/fem/EjsWiki/
uploads/Download/EjsS_Manual.pdf. [Accessed
03 31 2022].

Figure 3 – Weblab deployment into Moodle through EJSApp.

http://sinteza.singidunum.ac.rs

