
154

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2022-154-162

Miloš Cvetanović*,
Zaharije Radivojević,
Stefan Tubić

University of Belgrade,
School of Electrical Engineering,
Belgrade, Serbia

Correspondence:
Miloš Cvetanović

e-mail:
cmilos@etf.bg.ac.rs

AN APPROACH FOR SOFTWARE DESIGN AND DEVELOPMENT

Abstract:
One of the important challenges in software design and development is gathering
of user requirements and its successful translation into engineering specification
of a software product. This paper presents an approach for software design and
development that enables gradually gathering of user requirements by using
purposefully developed AFD language that enables a top-down functional de-
composition. AFD is a text-based language with a simple 14 rules grammar and
easy to understand semantics that are developed with computational thinking
in mind. The computational thinking methodology is incorporated in multiple
levels of decomposition in AFD. The lower levels are predominantly intended
for users for expressing the requirements while the upper levels are intended for
engineers for deciding upon implementation details. The proposed approach
suggests using the first four levels for a software design and using the fifth level
for mapping the design to selected software development paradigm. In case of
object-oriented development paradigm, AFD provides automatic generation of
appropriate UML sequence diagrams.

Keywords:
AFD, Functional Decomposition, UML, Software Design, Software Development.

INTRODUCTION

The first step in developing a software product is the requirements
gathering process [1]. The functional requirements are those that relate
to intended purpose of the product and its capabilities. The functional
requirements serve as a main input for making a design specification,
and moreover as a sound point of reference for checks and balances
throughout production and quality assurance [2]. The main problem in
requirements gathering is absence of a proper way of representing the
functional requirements. Currently, the requirements are represented
either in textual format that is easy for clients to understand but usually
lacks sufficient information for engineers, or in graphical format that is
preferred by engineers but usually has complex semantics that clients
hardly understand. In both cases, the result is jeopardized expectations
between clients and engineers, that leaves plenty of room for errors and
ambiguities.

ADVANCED ENGINEERING SYSTEMS AND SOFTWARE DEVELOPMENT SESSION
INVITED PAPER

http://sinteza.singidunum.ac.rs
https://doi.org/10.15308/Sinteza-2022-154-162

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Engineering Systems and
Software Development Session

155

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

This paper sheds some light on a solution named
Annotated Functional Decomposition (AFD) as an al-
ternative for software design and development. AFD is
a text-based language that is easy for clients to use and
understand, while at the same time enables engineers
to use it for a design and development as it provides
extendable semantics with annotations for keeping
track of all pieces of required information. Even though
it could be used as a stand-alone solution, AFD could
also be used to complement existing approaches such
as UML (Unified Modelling Language).

The remainder of the paper is organized as follows.
The second section presents AFD and explains its un-
derlying methodology. The third section provides an ex-
ample on how AFD could be used for a design of func-
tionalities of an information system. The fourth section
describes an approach for software design and develop-
ment that connects AFD and UML and repeats some
findings regarding the usage of AFD. The fifth section
concludes the paper.

2.	 ANNOTATED FUNCTIONAL
DECOMPOSITION

Annotated Functional Decomposition (AFD) is a
new language that resembles natural languages (so it is
easy to use by clients) and supports some semantics of
computer languages (so it is adequate for use by engi-
neers). AFD provides solutions for two main problems
that exist during initial steps of software design and de-
velopment. The first one is that functional requirements
usually do not adequately recognize all functionalities
needed for fulfilling intended purpose of the software
product. The second one is that design specification does
not meet all functional requirements. AFD solves those
two problems by introducing extendable set of anno-
tations for enabling stepwise refinement of functional
requirements and linking to the resources that will im-
plement those requirements.

In the essence, AFD is based on the existing design
paradigm named Structured design that performs a top-
down functional decomposition [3]. However, in order
to provide support for recognizing all needed function-
alities during the requirement gathering process AFD
builds upon methodological concepts introduced by
computational thinking (CT). CT is defined as a mental
activity for the formulation of a problem and expressing
the solution effectively, in such a way that a machine or
a person can perform [4] [5]. To achieve the main goal,
CT utilizes four techniques, also known as pillars. All

four pillars have great relevance and are independent
during the process of formulation of solutions compu-
tationally viable. The CT involves identify a complex
problem and break it down in sub-problems that are
easier to manage (decomposition pillar). Each one of
these sub-problems can be analysed individually with
greater depth, identifying similar problems which were
previously solved (pattern recognition pillar), focusing
only on the details that are important, whilst irrelevant
information is ignored (abstraction pillar). At last, steps
or simple rules can be created to solve each one of the
sub-problems found (algorithms pillar). AFD imple-
ments all four pillars trough annotations divided into
groups, that form different levels of the decomposition.

The first level of the decomposition in AFD is man-
datory as it describes decomposition of a problem while
all other levels are optional as they describe independent
and orthogonal aspects of the problem. The second level
describes control flow, the third describes data flow, the
fourth describes reusage of decomposition parts, and
the fifth describes resources regarding implementation.
AFD language is formally defined by its context-free
grammar that consists of 14 rules, as given in Table 1,
which define different levels of decomposition [6]. The
flexibility of the AFD is reflected in the fact that the rules
are constructed so that the levels of decomposition are
made orthogonal. Further extensions of AFD in terms of
new levels of decomposition could be easily introduced
by adding appropriate rules.

3.	 EXAMPLE OF AFD USAGE

Usage of AFD language could be demonstrated on an
example of designing an information system. Designing
process consists of stepwise refinement of functional re-
quirements that starts with abstract description and goes
gradually into details that at the end gives sufficient de-
tails for development. The steps actually represent differ-
ent levels of decomposition as defined in AFD, where the
first level of decomposition represents the most abstract
one easily understanded by client and that is progressively
updated by higher decomposition levels leading to the fi-
nal design specification easily understanded by engineers.

The example resembles a ticket purchasing system.
A user can purchase tickets for multiple seats on an
event with an optional reservations previously done by
the user. For each seat system finds a ticket, and then
checks whether the ticket is still available and optionally
reserved by the particular user.

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Engineering Systems and
Software Development Session

156

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

In case of successful checks the found ticket is
purchased for the user and reservation, if existed, is
removed. Information about all purchased tickets is
shown at the end.

The first level of decomposition represents the core
for all other decomposition levels. It identifies main
function and breaks it down into sub-functions. The
process is iteratively done until each function is resolved
into sub-functions comprehendible by the user. Each
function or sub-function is given in a separate line and
is represented by its name that should be meaningful
and descriptive in the context of the problem as much
as possible. Sub-function is shown indented to the func-
tion that it resolves. For the given example, the first level
of decomposition is shown in Listing 1.

The second level of decomposition introduces con-
trol flow into the result of the first level of decomposi-
tion. It identifies the order of the execution, conditional
execution, and repetitive execution. The order is repre-
sented by numbering each function or sub-function at
the particular level of indentation. Conditional execu-
tion is represented by a question mark after the number
and condition using a forward slash sign and is given
after the function name.

Repetitive execution is represented by an asterisk
sing after the number and repetition condition using a
forward slash sign and is given after the function name.

Listing 2 shows both first and second level of decom-
position for the given example, while the latter is high-
lighted in red.

The third level of decomposition introduces data
flow into the result of the first level of decomposition.
It identifies input and output data of the functions and
is given in a pair of brackets after the function name.
Multiple data are separated by comma signs, while each
of them has name and input/output type. Input and out-
put types are represented with greater then and less then
signs respectively. On the higher levels of abstraction in
a decomposition, a function could have data represented
as streams of data that can be resolved into data for sub-
functions following that function. In other words, data
streams enable data decomposition in the same manner
as functional decomposition enables decomposition of
functions. Data streams are represented with an equal
sign before the input/output sign while a dot sign is used
to represent a-part-of relationship between streams and
sub-streams. Listing 3 shows the first three levels of de-
composition for the given example, while the third level
is highlighted in red. All three levels are shown for the
purpose of the completeness of the example, while or-
thogonality between the second and the third level ena-
bles their independent visualisation.

No Rule

1 Function ::= FunctionDef FunctionDecompEntry FunctionList FunctionDecompExit | FunctionDef;

2 FunctionDecompEntry ::= INDENT;

3 FunctionDecompExit ::= DEDENT;

4 FunctionList ::= FunctionList Function | Function;

5 FunctionDef ::= FunctionPrefix FunctionName DataFlows ResourceFlows Condition NEWLINE;

6 FunctionPrefix ::= ID SPACE | FTYPE SPACE | ID FTYPE SPACE | ;

7 FunctionName ::= NAME | NAME HASH | HASH NAME;

8 Condition ::= SPACE CONDITION | ;

9 DataFlows ::= LBRACE DataFlowList RBRACE | ;

10 ResourceFlows ::= LSBRACE ResourceFlowList RSBRACE | ;

11 DataFlowList ::= DataFlowList COMMA DataFlow | DataFlow;

12 DataFlow ::= DIRECTION NAME;

13 ResourceFlowList ::= ResourceFlowList COMMA ResourceFlow | ResourceFlow;

14 ResourceFlow ::= RESOURCETYPE COLON NAME;

Table 1 – AFD grammar

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Engineering Systems and
Software Development Session

157

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

The fourth level of decomposition represents mark-
ing of the same functions. By identifying the same func-
tions their re-usage becomes possible and therefore de-
signing process eventually becomes more efficient and
less error prone. The same functions are marked with
a hash sign. Putting a hash sing after a function name
represents that the function could be re-used, while
putting a hash sign before a function name represents
that the function is re-usage of some previously defined
function.

Listing 4 shows the first four levels of decomposi-
tion for the given example, while the fourth level is high-
lighted in red. Due to orthogonality between levels of
decomposition the fourth level could also be indepen-
dently visualised.

The fifth level of decomposition introduces imple-
mentational details that are unessential for the user,
however needed for an engineer. In case of object ori-
ented implementation the details are information about
classes that implement particular function. A name of
a class that implements a function is given in a pair of
square brackets that follows the function name.

PurchaseSeats
	 Input
	 PurchaseSeat
		 FindTicket
		 CheckTicketAvailability
			 HasTheTicketBeenPurchased
			 WhetherTheTicketWasReserved
			 WhetherTheTicketWasReservedByTheUser
			 ReturnAvailability
		 PurchaseTicket
			 WhetherTheTicketWasReserved
			 RemoveReservation
			 Purchase
	 GetPurchasedSeatsForUser
	 Output

Listing 1 - The first level of decomposition in AFD for the ticket purchasing system

1 PurchaseSeats
	 1 Input
	 2* PurchaseSeat /seat in seats
		 1 FindTicket
		 2 CheckTicketAvailability
		 1 HasTheTicketBeenPurchased
		 2? WhetherTheTicketWasReserved /purchased == false
		 3? WhetherTheTicketWasReservedByTheUser/purchased== alse AND reserved == true
		 4 ReturnAvailability
		 3? PurchaseTicket /available == true
		 1 WhetherTheTicketWasReserved
		 2? RemoveReservation /reserved == true
		 3 Purchase
	 3 GetPurchasedSeatsForUser
	 4 Output

Listing 2 - The second level of decomposition in AFD for the ticket purchasing system

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Engineering Systems and
Software Development Session

158

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

1 PurchaseSeats(=>I.PS,<=O.PS)
	 1 Input(=>I.PS,<user,<event,<seats)
	 2* PurchaseSeat(>user,>event,>seat) /seat in seats
		 1 FindTicket(>event,>seat,<ticket)
		 2 CheckTicketAvailability(>user,>ticket,<available)
		 1 HasTheTicketBeenPurchased(>ticket,<purchased)
		 2? WhetherTheTicketWasReserved(>ticket,<reserved)/purchased==false
		 3? WhetherTheTicketWasReservedByTheUser(>user,>ticket,<reservedByUser) ⏎
 /purchased == false AND reserved == true
		 4 ReturnAvailability(>purchased,>reserved,>reservedByUser,<available)
		 3? PurchaseTicket(>user,>ticket) /available == true
		 1 WhetherTheTicketWasReserved(>ticket,<reserved)
		 2? RemoveReservation(>ticket) /reserved == true
		 3 Purchase(>user,>ticket)
	 3 GetPurchasedSeatsForUser(>user,<purchasedSeats)
	 4 Output(>purchasedSeats,<=O.PS)

Listing 3 - The third level of decomposition in AFD for the ticket purchasing system

Character C and a colon are used as a prefix for class
name in order to denote that an object oriented imple-
mentation is used. Listing 5 shows the complete exam-
ple with all five levels included, while the fifth level is
highlighted in red, and just as for all previous levels of
decomposition the orthogonality is maintained.

The design of a system given in AFD language could
be verified according to the AFD grammar. For the pur-
pose of verification an appropriate AFD Tool is imple-
mented in Java as the plugin for Eclipse IDE, as one of the
most widely used integrated development environment.
Moreover, besides verification, AFD Tool enables map-
ping of AFD to UML. Details regarding relationship be-
tween AFD and UML are given in the following section.

4.	 RELATIONSHIP BETWEEN AFD AND UML

UML represents de-facto standard in domain of soft-
ware design and development with more than 25 years
of proved usability [7]. UML is a graphical language
with extendable semantics that is primarily used for
supporting object-oriented design and analysis [8]. In
comparison with UML, AFD offers more technology ag-
nostic approach that besides supporting object-oriented
programming (due to the fifth level of decomposition)
also supports traditional procedural based programming.
Moreover, that also means that AFD could be more at-
tractive for emerging technologies and novel program-
ming paradigms (e.g. data-flow, functional program-
ming, reactive programming).

AFD could also be seen as a technology comple-
menting other existing ones. For example, using AFD
as a text-based language to expedite creation of some
UML diagrams, such as sequential or activity diagrams.
Current implementation of the AFD Tool enables auto-
matic generation of UML sequential diagrams according
to a design of a system given in AFD language when the
design includes all five levels of decomposition. Figure
1 shows a corresponding a UML sequence diagram for
the ticket purchasing system given in Listing 5, while
Figure 2 shows the sequence fragment that is a result of
identified re-usage of a function on the fourth level of
the decomposition.

Similarly, AFD could be used for use case scenario
definition, or could be integrated with existing require-
ments management tools in order to provide better
traceability of the requirements and their implemen-
tation in the final product. In that manner, AFD may
complement UML during the requirements gathering
process or even be considered as general overview of the
specification whose details are elaborated on separate
UML diagrams. An approach for using AFD in conjunc-
tion with UML for the purpose of software design and
development is proposed in Figure 3. The approach sug-
gests using the first four levels of decomposition in AFD
for software design and using the fifth level of decompo-
sition in AFD for mapping the design to selected soft-
ware development paradigm. In case of object-oriented
programming paradigm initial versions of some UML
diagrams could be automatically generated (currently,

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Engineering Systems and
Software Development Session

159

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

only sequence diagrams are supported). The rest of the
software development activities would depend on the se-
lected software development paradigm. Even though the
proposed approach resembles the waterfall development
methodology the approach could also support iterative
or cyclic development methodologies [9] [10].

In order to support the assumptions regarding the
benefits of AFD, a preliminary quantitative evaluation
was done. The aim of the evaluation was to assess whether

using AFD facilitates focusing on required logical checks
and constraints while designing software products in
comparison to UML. Groups of students who designed
the products using AFD were considered during evalua-
tion as experimental groups, while groups who designed
the products using UML as control groups. The results
showed that experimental groups achieved higher aver-
age score than control groups. On three experiments
each one involving more than 100 students, average

1 PurchaseSeats(=>I.PS,<=O.PS)
	 1 Input(=>I.PS,<user,<event,<seats)
	 2* PurchaseSeat(>user,>event,>seat) /seat in seats
		 1 FindTicket(>event,>seat,<ticket)
		 2 CheckTicketAvailability(>user,>ticket,<available)
		 1 HasTheTicketBeenPurchased(>ticket,<purchased)
		 2? WhetherTheTicketWasReserved#(>ticket,<reserved) /purchased == false
		 3? WhetherTheTicketWasReservedByTheUser(>user,>ticket,<reservedByUser) ⏎
 /purchased == false AND reserved == true
		 4 ReturnAvailability(>purchased,>reserved,>reservedByUser,<available)
		 3? PurchaseTicket(>user,>ticket) /available == true
		 1 #WhetherTheTicketWasReserved(>ticket,<reserved)
		 2? RemoveReservation(>ticket) /reserved == true
		 3 Purchase(>user,>ticket)
	 3 GetPurchasedSeatsForUser(>user,<purchasedSeats)
	 4 Output(>purchasedSeats,<=O.PS)

Listing 4 - The fourth level of decomposition in AFD for the ticket purchasing system

1 PurchaseSeats(=>I.PS,<=O.PS)[C:BoxOffice]
	 1 Input(=>I.PS,<user,<event,<seats)
	 2* PurchaseSeat(>user,>event,>seat) /seat in seats
		 1 FindTicket(>event,>seat,<ticket)[C:Event]
		 2 CheckTicketAvailability(>user,>ticket,<available)
		 1 HasTheTicketBeenPurchased(>ticket,<purchased)[C:Ticket]
		 2? WhetherTheTicketWasReserved#(>ticket,<reserved)[C:Ticket] ⏎
 /purchased == false
		 3? WhetherTheTicketWasReservedByTheUser(>user,>ticket,<reservedByUser) ⏎
 [C:Ticket] ⏎ /purchased == false AND reserved == true
			 4 ReturnAvailability(>purchased,>reserved,>reservedByUser,<available)
		 3? PurchaseTicket(>user,>ticket) /available == true
		 1 #WhetherTheTicketWasReserved(>ticket,<reserved)[C:Ticket]
		 2? RemoveReservation(>ticket)[C:Ticket] /reserved == true
		 3 Purchase(>user,>ticket)
	 3 GetPurchasedSeatsForUser(>user,<purchasedSeats)[C:User]
	 4 Output(>purchasedSeats,<=O.PS)

Listing 5 - The fifth level of decomposition in AFD for the ticket purchasing system

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Engineering Systems and
Software Development Session

160

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

grades for experimental vs. control groups, on a scale
0-10, were as follows: 8.02 vs. 7.60, 7.95 vs. 7.75, 8.49
vs. 7.12. The results of the evaluation suggest that it
could be expected that AFD could help communication
between users and engineers and to smooth transition
from requirements to specification. However, further
improvements of AFD would be required in order to
integrate it with the existing tools and paradigms.

5.	 CONCLUSION

Performance of a design and development method-
ology depends on its ability to provide easy understand-
ing for users and sufficient information for engineers.
This paper presents an approach that suggests using
AFD language for software design and its automatic
mapping to UML for the purpose of software devel-
opment. AFD is a text-based language based on com-
putational thinking that enables stepwise refinement
of a software product design in order to make it more

Figure 1 - Example of a corresponding UML for the ticket purchasing system designed in AFD (sequence diagram)

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Engineering Systems and
Software Development Session

161

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Figure 2 - Example of a corresponding UML for the ticket purchasing system designed in AFD (sequence fragment)

Figure 3 - Approach for software design and development

comprehendible for users and linking it to implementa-
tion details required by engineers in order to make soft-
ware development more consistent with the design. The
stepwise refinement is supported with multiple levels of
decomposition in AFD. The approach suggests using the
first four levels for a software design and using the fifth
level for mapping the design to selected software devel-
opment paradigm. The lower levels are predominantly
intended for users for expressing the requirements while
the upper levels are intended for engineers for decid-
ing upon implementation details. AFD as a technology
that, used alone or in conjunction with other available
technologies, tends to help in production of more reli-
able and robust software products that fulfil end-users
expectations. Having in mind influence of software

industry on the global economy then each even minor
step of improvement may have great value and impor-
tance.

6.	 ACKNOWLEDGEMENTS

Science Fund of the Republic of Serbia, Grant/Award
Number: AVANTES; Ministry of Education, Science,
and Technological Development of the Republic of Serbia,
Grant/Award Numbers: III44009, TR32047. The authors
are grateful for the provided financial support.

http://sinteza.singidunum.ac.rs

Sinteza 2022
submit your manuscript | sinteza.singidunum.ac.rs

Advanced Engineering Systems and
Software Development Session

162

SINTEZA 2022
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

7.	 REFERENCES

[1] 	 K. Curcio, T. Navarro, A. Malucelli and S. Reinehr,
“Requirements engineering: A systematic mapping
study in agile software development,” Journal of
Systems and Software, vol. 139, pp. 32-50, 2018.

[2] 	 S. Goericke, The future of software quality assur-
ance, Springer Nature, 2020.

[3] 	 E. Brimhall, R. Wise, R. Simko, J. Huggins and W.
Matteson, “A systematic process for functional
decomposition in the absence of formal require-
ments,” INCOSE International Symposium, vol. 26,
no. 1, pp. 1204-1218, 2016.

[4] 	 A. Labusch, B. Eickelmann and M. Vennemann,
“Computational Thinking Processes and Their
Congruence with Problem-Solving and Informa-
tion Processing,” in Computational Thinking Edu-
cation, Springer Singapore, 2019, pp. 65-78.

[5] 	 J. M. Wing, “Computational thinking’s influence
on research and education for all,” Italian Journal
of Educational Technology, vol. 25, no. 2, pp. 7-14.

[6] 	 S. Tubić, M. Cvetanović, Z. Radivojević and S.
Stojanović, “Annotated functional decomposi-
tion,” Computer Applications in Engineering Edu-
cation, vol. 29, no. 5, pp. 1390-1402, 2021.

[7] 	 M. Ozkaya, “Are the UML modelling tools power-
ful enough for practitioners? A literature review,”
IET Software, vol. 13, no. 5, p. 338 – 354, 2019.

[8] 	 M. Gogolla, F. Büttner and M. Richters, “USE: A
UML-based specification environment for vali-
dating UML and OCL,” Science of Computer Pro-
gramming, vol. 69, no. 1, pp. 27-34, 2007.

[9] 	 M. Nawaz, T. Nazir, S. Islam, M. Masood, A. Me-
hmood and S. Kanwal, “Agile Software Develop-
ment Techniques: A Survey,” Proceedings of the
Pakistan Academy of Sciences: A. Physical and
Computational Sciences, vol. 58, no. 1, pp. 17-33,
2021.

[10] 	A. Jarzębowicz and P. Weichbroth, “A Qualitative
Study on Non-Functional Requirements in Agile
Software Development,” IEEE Access, vol. 9, pp.
40458-40475, 2021.

http://sinteza.singidunum.ac.rs

