
SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

328
Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2021-328-332

Milan Savić*,
Miodrag Živković

Singidunum University,
Belgrade, Serbia

Correspondence:
Milan Savić

e-mail:
milan.savic.16@singimail.rs

ALGORITHM FOR SORTING NON-NEGATIVE INTEGERS

Abstract:
This paper presents an algorithm for sorting non-negative integers. The algorithm
solves the sorting problem recursively. There are numerous sorting algorithms
available today, however this paper suggests a different approach to solving this
problem using a binary representation of integers. The paper graphically presents
comparative tests that were executed with already existing sorting algorithms.
The test results show in which situations it is best to use this algorithm. Possible
further directions of development of this algorithm, as well as other algorithms
that can use this approach to problem-solving, are also presented.

Keywords:
sorting algorithm, binary number, recursion.

INTRODUCTION

Data sorting is one of the basic problems in programming. Tremen-
dous amounts of data that require to be analyzed and processed are pro-
duced daily. Sorting can facilitate and speed up the process of data analy-
sis and processing. A large number of applications use sorting algorithms
to solve a particular problem in the fastest and easiest way. Sorted data
are simpler to work with and enable users better data display as well as
faster search. Dozens of algorithms that solve this problem have been
written to date. Most of these algorithms work very quickly for small
amounts of data, but if the data amount is large, the performing time of
the algorithm can vary drastically. Therefore, one ought to choose the
best possible algorithm that will provide the best and fastest solution
to the problem. The sorting algorithm can be used to sort both simple
(integers, decimal numbers, characters) and more complex data types
(objects). Data sorting order can be ascending or descending.

Modern web, mobile and desktop applications use some of the existing
sorting algorithms. Sorting problem is present in variety of domains in
the modern computer science as well. Because of that, sorting algorithms
are one of the basic algorithms in programming.

STUDENT SESSION

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

329

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

There is always the need to find new algorithms, even
if they work for just a specific input data (such as posi-
tive integers), because even slightest improvement in the
performances could lead to reducing the costs drastically.

This paper is organized as follows. Section 2 provides
a short overview of already existing solutions. Section
3 proposes the new algorithm, while section 4 yields
comparison with other approaches. Finally, section 5
concludes the paper.

2. EXISTING ALGORITHMS FOR SOLVING
SORTING PROBLEMS

Several algorithms that solve the sorting problem
have been written to date. Algorithms use various tech-
niques to come up with solutions [1] [2]. Some algo-
rithms come to the solution by an iterative procedure,
others by recursive, as well as by using different types of
data. Some of the basic algorithms are bubble sort, selec-
tion sort, insert sort, merge sort, quick sort.

Bubble sort is a simple sorting algorithm that works
by comparing two adjacent elements of an array and
changing their places if they are in the wrong order [3].
After each pass through the array, one element, the largest
or the smallest, takes its position in the sorted array.
The average time complexity of the algorithm is O(n2).
Therefore, it belongs to the group of slower algorithms [4].

Selection sort is a more efficient algorithm than bubble
sort, although the average time complexity is the same as
with bubble sort O(n2) [5]. The idea of the algorithm is
to find the smallest element after one pass through the
array and place it in the proper position. After the first
iteration, the smallest element of the array will be in the
first place, after the second iteration the second smallest
element of the array will be in the second place and so
on. After the i-th iteration, the i smallest elements of the
array will be sorted in ascending order.

Insert sort is practically a more efficient algorithm
than the previously mentioned ones. Its average time
complexity is O(n2). Sorting is done by adding a certain
element of the array to the previously sorted part of the
array [6]. Initially, only the first element belongs to the
sorted part of the array and after that, the other elements
are added to that part of the array at the positions so that
the array remains sorted.

Merge sort was invented by John von Neumann in
1945. Unlike the aforementioned algorithms that use an
iterative approach of passing through an array, merge
sort uses a recursive method of passing through an

array. The average time complexity of this algorithm is
O(n log n) and it, therefore, belongs to the group of
more efficient algorithms. This algorithm is much more
effective than those previously mentioned. The idea
of this algorithm is to divide the array which is to be
sorted into two halves, i.e. two smaller arrays, which are
further divided by a recursive call until an array of one
element is obtained. After that, the smaller sorted parts
are merged and sorted and thus a sorted initial array is
obtained [7].

Quick sort was developed by Tony Hoare in 1959. The
average time complexity of this algorithm is O(n log n).
Although in the worst case the algorithm is no better
than slow, square, sorting methods, in practical applica-
tions it has proven to be amongst the most efficient ones.
The idea is to choose one element, called a pivot, based
on which the other elements will be sorted. At the end
of one pass through the array, the exact position of the
pivot element in the sorted array is found and the array is
divided into two parts, into elements smaller and larger
than the pivot element, which are further sorted by a
recursive call [8].

3. IMPLEMENTATION OF THE PROPOSED
ALGORITHM

Unlike the previously mentioned algorithms, the
proposed algorithm performs sorting based on the binary
presentation of numbers. The paper presents an algo-
rithm that sorts non-negative integers in ascending order.
The algorithm solves the problem using recursion.

The idea of the algorithm is to regard each number
as a binary number and to perform sorting based on the
value of a certain bit.

The idea of the algorithm will be presented below.
Let unsorted array integers 9,6,6,1,8,9,9,7,4,3 be given.

Each of these numbers can be represented in binary
notation (Figure 1).

Figure 1 - Unsorted array

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

330

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

First, sorting is performed based on the value of the
highest bit using two pointers. One pointer points to the
first element of the array (lowPointer), while the other
points to the last (highPointer). If the value of the high-
est bit pointed to by the lowPointer is equal to 0 (zero),
the pointer moves to the next element of the array (low-
Pointer++). If the value of the highest bit pointed to by
the highPointer is equal to 1 (one), the pointer moves to
the previous element of the array (highPointer--). If the
value of the highest bit pointed to by the lowPointer is
equal to 1, and the value of the highest bit pointed to by
the highPointer is equal to 0, then the replacement of the
value of the elements pointed to by these two pointers
is performed. The lowPointer and highPointer continue
to move through the array until the highPointer points
to an element with a smaller index than the lowPointer.

Figure 2 - The arrangement of elements after
one pass through the array

After one pass through the array, the arrangement
of elements as in Figure 2 is obtained. The grouping of
elements based on the value of the bit at position 3 can
clearly be seen. Elements starting with 0 are grouped to
the left, while elements starting with 1 are grouped to
the right.

The next step is sorting the left and then the right
part of the array. This sorting is performed based on the
value of the bit at position number 2. The same method
of sorting using two pointers is used. After the elements
are grouped based on the value of the bit at position 2,
the sorting is moved to the lower bit positions until the
bits at the lowest position are reached (Figure 3).

Figure 3 - Other steps for sorting an array

The pseudocode of this algorithm is given below
(Listing 1). The bitSort algorithm has 4 parameters: the
array to be sorted (arr), the low pointer (low), the high
pointer (high), the bit position based on which the sorting
is performed (bitPosition). The algorithm uses the getBit
helper function for returning the bit value at a certain
position (bitPosition) of a certain number (number).

getBit(number, bitPosition){
 return (number>>bitPosition)&0b1;
}

bitSort(arr[], low, high, bitPosition){
 if(low==high or bitPosition<0){
 return;
 }

 left = low;
 right = high;

 while(low <= high){
 if(getBit(arr[low],bitPosition)==0){
 low++;
 }

 while(low<=high and
 getBit(arr[high],bitPosition)==1){
 high--;
 }

 if(low<=high){
 swap arr[low] and arr[high];
 low++;
 high--;
 }
 }

 if(high>=0){
 bitSort(arr,left,high,bitPosition-1);
 }

 if(low<=right){
 bitSort(arr,low,right,bitPosition-1);
 }
}

Listing 1 - Pseudocode of the proposed algorithm

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

331

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

The value for the bitPosition parameter can be prede-
termined depending on the length of the binary record
of the largest number in the array.

The time complexity is O(kn) and it can therefore be
classified into a group of faster-sorting algorithms. The
constant k represents the length of the binary record of
the largest element of the array, while n represents the
length of the array.

The advantage of this algorithm is that the recursion
depth is limited by the number passed through the
bitPosition parameter during the first function call.

4. COMPARISON WITH EXISTING
ALGORITHMS

In this chapter, comparative tests of MergeSort,
QuickSort and the proposed BitSort algorithms will
be presented. All examples were tested in the Java pro-
gramming language on a PC (Intel i5-3337U 1.8GHz).

Figure 4 shows how the performance time of the
algorithm changes depending on the change in the range
of values of the elements of the array. The example uses
an array of 1,000,000 elements.

While the range of values of the elements of the array
is [0, 1000000), [0, 100000), [0,10000), [0, 1000). The
performance time shown is relative and depends on the
performance platform.

Figure 4 - Performance time depending on the
range of values

The graph shows that the performance time of the
BitSort algorithm is approximately the performance
time of the QuickSort algorithm for array elements
whose range is [0, 1000000) and [0, 100000), while it is
much faster for a smaller range of values.

Figure 5 shows the performance time of array sort-
ing algorithms depending on the number of array ele-
ments for array elements whose range is [0, 100000). The
performance time shown is relative and depends on the
performance platform.

Figure 5 - Performance time depending on the
number of array elements

For small amounts of data, all three algorithms perform
relatively quickly. As the amount of data increases, it
can be seen that the BitSort algorithm is faster than the
MergeSort and QuickSort algorithms.

Figure 6 shows the number of checked array ele-
ments depending on the range of values of the elements
of the array for a constant array length of 1,000,000
elements.

Figure 6 - Number of checked elements depending
on the range of value

The graph shows that the BitSort algorithm uses a
smaller number of array element approaches during
sorting.

Figure 7 shows the number of checked array elements
depending on the number of array elements for a
constant range of element values [0, 100000).

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Student Session

332

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Figure 7 - Number of checked elements depending on the
number of array elements

The graph shows the BitSort algorithm checking a
smaller number of array elements than the QuickSort
algorithm.

5. CONCLUSION

This paper presents a sorting algorithm that sorts
non-negative integers based on a binary representation
of an array element. Based on the time complexity of
the algorithm, as well as comparative tests with already
existing algorithms, it is shown that the algorithm be-
longs to the group of faster-performing algorithms. The
proposed algorithm performs relatively quickly for large
amounts of data and can therefore be used in today's
world where huge amounts of data are produced daily.
The advantage of the algorithm is that the number of
recursive function calls is known in advance.

Since the algorithm sorts only non-negative integers,
it is possible to continue with the further development
of this algorithm. The next steps in the development of
this algorithm are sorting negative integers, as well as
other data types. Since the algorithm uses binary data
presentation, it is possible to lower the algorithm to a
level as close as possible to the hardware and thus fur-
ther reduce the performance time. One can use this way
of developing an algorithm, using binary data presentation,
on other algorithms and thus attempt to improve the
existing ones or write new ones.

REFERENCES

[1] J. Anderson and S. M., “Sequential coding algorithms:
A survey and cost analysis,” IEEE Transactions on
communications, vol. 32, no. 2, pp. 169-176, 1984.

[2] P. Vitanyi, “Analysis of sorting algorithms by kol-
mogorov complexity (a survey),” Entropy, Search,
Complexity, pp. 209-232, 2007.

[3] O. Astrachan, “Bubble sort: an archaeological algo-
rithmic analysis,” ACM Sigcse Bulletin, vol. 35, no.
1, pp. 1-5, 2003.

[4] W. Min, “Analysis on bubble sort algorithm optimi-
zation,” in 2010 International forum on information
technology and applications, 2010.

[5] R. Edjlal, A. Edjlal and T. Moradi, “A sort imple-
mentation comparing with bubble sort and selec-
tion sort,” in 2011 3rd International Conference on
Computer Research and Development, 2011.

[6] I. Beck and S. Krogdahl, “ A select and insert sorting
algorithm,” BIT Numerical Mathematics, vol. 28,
no. 4, pp. 725-735, 1988.

[7] C. Bron, “Merge sort algorithm [m1],” Communica-
tions of the ACM, vol. 15, no. 5, pp. 357-358, 1972.

[8] R. Sedgewick, “Implementing quicksort programs,”
Communications of the ACM, vol. 21, no. 10, pp.
847-857, 1978.

