
SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

31

Nebojša Sarvan,
Nina Manojlović,
Milica Nikolić,
Goran Savić,
Milan Segedinac*

Faculty of Technical Sciences,
University of Novi Sad,
Novi Sad, Serbia

Correspondence:
Milan Segedinac

e-mail:
milan.segedinac@gmail.com

MAE BASED TOOL FOR SEMANTIC ANNOTATION OF
A SOURCE CODE

INFORMATION SECURITY AND DATA SCIENCE

Abstract:
The motivation for this research came with the need for a tool that can be
easily used for annotating the source code and which would provide the
most suitable output for latter processing and analysis. The output should
represent all of the pieces of annotated code followed by annotation given,
and additional features. These features refer both to the text of the code and
annotation such as a field that expands the meaning of annotation and begin
and end positions in a document of the text and annotation. For the purpose
of annotating source code we have used an existing tool MAE. In order to
facilitate retrieving of an output this paper proposes a solution to transform-
ing MAE output and mapping it to another more suitable form.

Keywords:
text mining; text annotation; annotating tool.

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2018-31-37

1. INTRODUCTION

Nowadays, when a huge amount of data is available all over the In-
ternet, it is very important to collect and properly analyze them as they
can be very valuable for various purposes. In order to process textual data
correctly, one could rely on variety of tools for text mining. For better
understanding and providing computers to deal with data as good as hu-
mans, general semantic of the text should be recognized. Semantic web is
the most popular approach when it comes to this. Words and phrases are
represented by ontologies, which help computers determine text mean-
ing. In order to put individual words into context, all the words should be
given an annotation [1, 2]. Text annotation is a process of adding an ad-
ditional meaning to the text, by marking it, highlighting or commenting.
It turns the content into a better manageable data source [3]. From this
point, text annotations can be referred to metadata as they provide infor-
mation about a text without fundamentally altering its original form [4].

The problem with semantic annotations is that these annotations are
not universal. Therefore, domain specific knowledge is used for semantic
annotation and this domain specific information is provided by ontolo-
gies [3, 5]. In the case considered, semantic annotation is strictly limited
to the field of IT, more specifically to annotating source code.

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Information Security and Data Science

32

Dealing with a source code annotation is a way more
distinct from just annotating regular text. It introduces
new kind of complexity, where more structured forms
are expected for defining and describing concepts those
annotations are related to.

This paper proposes a specific tool for annotating
source code relying upon the existing annotation tool
MAE and explains in details how to use MAE in com-
bination with our specific tool in order to get the ap-
propriate results. Its main goal is to describe the process
of mapping the output from this tool to a convenient
form for later processing in some of IDE’s (Integrated
Development Environments). Although the paper is
more concentrated on combination of these two tools,
our software can also be used independently for other
kinds of purposes.

In addition to this introduction, the paper consists of
four sections and a reference list. Section I presents re-
lated work through analysis of some of techniques used
for annotation and explanation how our solution should
overcome spotted disadvantages, followed by the detail
coverage of MAE annotation tool. Section II fully de-
scribes our work. All of modifications done to adjust the
MAE tool for the purpose of our research are presented
and our software for working with MAE is fully speci-
fied. Concrete case study is presented and discussed in
Section III. Finally, Section IV gives an overview of the
paper and some possible directions of how this system
can be upgraded in the future.

2. RELATED WORK

When firstly introduced to our task, the main goal
was to find an existing tool for source code annotation,
rather than writing it from the scratch. However, among
plenty annotation tools it was not that easy finding a
convenient one. Beside all the good features that tools
we came across during our research provide, they were
also lots of disadvantages that would require additional
tasks in order to use them, which did not seem as the
best solution.

ELAN [6, 7] is the software designed for creating,
editing or searching annotations for audio or video files
that is a very powerful tool when it comes to annotating.
However, based on the fact that is principally designed
for multimedia and not text annotations, we assumed
that modifying its source code would take more time
than implementing our own annotation tool from be-
ginning.

When it comes to text mining, more precisely text
extraction, preprocessing and analysis, GATE [8, 9] has
very good characteristics and provides well performing
results. More importantly, GATE is capable of automat-
ic text annotation, relying on existing ontologies. On the
other side, due to its very complex structure and extra
task on making an ontology that reflects our data, GATE
did not represent the best possible tool for our task.

Eclipse plugin [10] is an additional feature provided
by Eclipse Integrated Development Environment (IDE)
that deals with source code annotations. Even though it
fulfills our needs in annotating source code, utilization
of this plugin is narrowed just to one specific program-
ming environment and it also incorporates all attached
annotations directly within source code, which makes
the original source code messy and harder to under-
stand.

What we needed was a simple tool that allows manu-
al text annotation, whether it is free plain text or a source
code. Besides, just selecting specific lines or sections,
freedom in annotating the code with annotations that
fit the task most properly, and setting our own annotat-
ing structure was what really matters. We have found
MAE [11, 12] as the most suitable tool for our work for
two reasons. Its ability to provide for annotating source
code represents the biggest MAE advantage. Another
reason for choosing MAE is that it is an independent
tool, which holds and handles files for annotation by it-
self, rather than incorporating it in original source code
which could change its original structure and make it
more inconspicuous.

MAE annotation tool

MAE (Multi-document Annotation Environment) is
an annotation tool for natural language text annotation.
MAE is written in Java, thus Java version 8 or later is
required for MAE to run. It is available in executable
binary (jar) file or as a release package (zip).

Defining an annotation task is first thing to do in
order to use MAE tool properly. The task is represented
by DTD (Document Type Definition) which defines the
structure and the legal elements and attributes of the
data. By so, defining the task name, the tag names, and
the tag attributes are the necessary steps in process of
completing an annotation task. The task name is defined
with the !ENTITY tag, followed by specified word name
and actual name of the task you want to be created.
In annotated output files this is reflected as the name
of the root tag element. Tag elements are defined by

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Information Security and Data Science

33

!ELEMENT and specify the names of the tags being in
an annotation task, and their attributes. Although two
types of tags can be specified – extent tags and link tags,
we are going to concentrate just on explanation of the
extent tag, since it is most important for our work. Ex-
tent tags should be unique, and they are used to label
spans of text in the document. #PCDATA follows the
name of an extent tag and indicates that it is going to be
associated with some span of text in the document. Each
extent tag is assigned a color to visualize tag instance
over the document that is being annotated. Attributes
(defined by the !ATTLIST) keep the information asso-
ciated with each tag, and expand their meaning. Some
attributes are pre-defined by MAE – extent tags will al-
ways have attributes like id, spans, and text, even if they
are not determined in the DTD. In order to define at-
tribute, first thing to do is to specify an extent tag name
which attribute is going to refer to. Later, attribute name
and type should be given. Those types will be mentioned
later in the paper. Firstly, we will go over the details of
the pre-defined attributes in MAE.

While creating the tags, MAE will automatically as-
sign an id attribute to every each of them. This attrib-
ute provides all the tags to be uniquely identified. As
mentioned earlier in the chapter, all extent tags have
an attribute called spans, which denotes the positions
of first and last character of annotated area within the
document. However, it is possible for an extent tag to be
“non-consuming”. By default, MAE does not allow an
existence of tags like this, but by defining an extent tag’s
spans attribute as #IMPLIED, MAE will allow that tag to
be non-consuming.

In regard to attribute types, MAE supports four
types, from which only one is relevant for our task. All of
the attributes are of type CDATA which means that they
have a free text value. Attribute can be set to mandatory
or optional, which is accomplished by assigning them
keywords #REQUIRED and #IMPLIED respectively. All
of the required attributes should be filled. MAE allows
setting default values for any attribute by placing the de-
sired value at the end of the attribute definition.

Once a valid task definition is created, it could be
loaded into this tool. MAE will generate tables corre-
sponding to tags defined in the DTD in the bottom half
of the interface (Fig. 1). As mentioned earlier, to each
extent tag type, different color will be assigned.

Fig. 1. MAE’s Graphical User Interface

MAE can be used for annotating plain text files as
well as an existing XML annotation task, so both of
those kinds of files could be loaded. An existing XML
file can be opened only when it matches the name of
task definition that is currently loaded (the root node of
the XML). Otherwise MAE will open the XML as a plain
text. The document will be showed up at the top half of
the interface. Once the file for annotation is loaded, an-
notation process can begin. By selecting the desired an-
notation from the menu, tag instance is created and cor-
responding row in a table in the bottom is immediately
populated. MAE will automatically generate predefined
attributes, and fill in id, spans and text fields. When a
new tag is created, MAE will assign any default values
for its attributes, if specified in DTD.

3. SYSTEM FOR SOURCE CODE
ANNOTATION

In previous section we have introduced an exist-
ing annotation tool – MAE and fully described it in its
original form. This part will also describe MAE, but now
from the point of our, modified form. All of modifica-
tions will be mentioned and explained. Also, reasons for
those modifications will be given. Later, we’ll present
how the output of the modified MAE tool can be inte-
grated and used for purpose of source code annotation.

MAE modifications

As already mentioned, main goal of this research is
annotation of the source code for educational purposes.
MAE does the job when it comes to annotating source

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Information Security and Data Science

34

code, but for our specific task it failed in giving good
results. Rather than doing all the work from the begin-
ning, we have decided to use the existing solution, and
upgrade it. First of all, it’s important to emphasize that
we didn’t modified the source code on its own, but only
made changes of their original DTD file.

As described in section II, MAE has quite complex
structure. In order to simplify it, we left out multiple
parts of its DTD file, which are surplus and irrelevant for
our particular problem. These parts mainly refer to link
tags and their attributes. What have left of original DTD
was later modified in a way to support structure of files
needed to be annotated. The files are the part of student
project with unique structure that will be described in
details in the next section.

Fig. 2 represents DTD file when modified.

Fig. 2. Appearance of the modified .dtd file

DTD consists of four main elements – MODEL, RE-
POSITORY, SERVICE and CONTROLLER. Each ele-
ment has the same attribute list, as follows: id, spans,
text, and comment. First three attributes are already de-
scribed in previous section. The last-mentioned attribute
is added to expand the meaning of each element, more
precisely to give the element semantic connotation. This
attribute is represented by free text input field, and is
left empty for an annotator to fill it. There is no specific
standard for that, but we established the convention in
order to have unique structured data that can be easily
processed. Element titles were not chosen randomly, but
in a way to follow the problem definition. Reasons for
declaring those titles and also comment field structure
will be given in section IV. Now, let’s turn to specifica-
tion of our specific software and how it deals with the
output that modified MAE tool provides.

Our software

This software is, above all, made as an upgrade of
MAE tool. However, it can be used independently for
similar kinds of problems. The main goal is to do map-
ping of features given by MAE into specific form suit-
able for later analysis. This chapter provides information
about software implementation, both as a guide of how
to use it.

Software is written in Java programming language,
so it is basically Java application. Input is the output of
the MAE tool, more specifically, the XML files generated
as a result of annotating process. XML contains all kind
of knowledge of a file that was annotated using MAE. In
our case, annotated file consists of source code, instead
of plain text. TEXT tag contains this kind of informa-
tion. It is followed by tag TAGS which represents all of
user defined annotations. As mentioned in Chapter II
(A), these tags consist of attributes needed for describ-
ing particular annotation. One of the main reasons for
creating this tool is the fact that the most important at-
tribute is not in proper form for further analysis. Specifi-
cally, attribute span contains range between first and last
character position of annotated area in the file that has
been annotated. The way we need it to be is some kind
of format that provides information about line in which
annotated area starts and ends, both as columns with
same meaning. So, our first task was to do the mapping
from one to another appropriated form. This particular
task required parsing XML files first, so we could gain
originally annotated source code as well as access span
attribute at all. One may not have all of the original files
on its file system, so one way of accessing it would be
to extract it from TEXT tag and save it as another tem-
porary file. After having those values, one should call
inbuilt LineFromChar function, as follows:

LineFromChar(File tempFile, int startCh-

ar, int EndChar)

where tempFile refers to location of temporary file,
startChar represent position of first written character
while endChar is position of last written character in
annotated area. Return value of this function is a String
that contains all the knowledge about lines and columns
in which annotated text starts and ends. Due to numer-
ous annotations with same title that can be found in
multiple different files, output of our tool is represented
as a collection of sections, looking as follows:

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Information Security and Data Science

35

Section(String fileName, String content,

String sectionType, int lineStart, int col-

Start, int colEnd, int lineEnd, String com-

ment)

where fileName is a name of original source code
file which contains this particular annotation, content
is a piece of source code covered by annotation, line-
Start, lineEnd, colStart and colEnd are respectively line
in which annotated text starts, line in which annotated
text end, column in which annotated text starts and col-
umn in which annotated text ends. SectionType as well
as comment parameter are strictly tied to our case study,
thus will be explained in details in Chapter IV.

This collection is mapped to JSON format, as it is the
most suitable detected form for latter tasks. The whole
process is shown in Fig. 3.

Fig. 3 . Annotation process represented
by Activity Diagram

4. CASE STUDY

All of the work is done as a part of major project
which purpose is to determine student’s knowledge
in IT domain, based on eye movements. For this task
Java Spring project is used as a case study, so model for
predefined annotations and annotations themselves are
specified for Java source code. Structure of project that
is used is shown in Fig. 4.

Fig. 4 . Structure of a project used for case study

Based on project structure one can easily notice few
obvious sections which we declared as predefined anno-
tations. Followed by names of the packages, those anno-
tations are titled as: MODEL, REPOSITORY, SERVICE
and COTROLLER. Some of the classes does not carry
any additional meaning, thus they are not relevant for
this specific task and were not annotated. Each anno-
tation has the same attributes which were explained in
details in previous chapters. The most specific of them
all is comment attribute, which is tightly connected to
this particular case study. Depending on type of sec-
tion, particularly if it is annotation in code, or part of a
method, comment field can have three forms. Comment
is a plain text field which should be written in one of the
following formats:

 ◆ METHOD_NAME;ENTITY , if section is refer-
ring to the whole method. In form above, meth-
od_name represents name of the method which
is being annotated, and entity stands for entity
that the previous mentioned method is related to,
mostly return value of specific method.

 ◆ METHOD_NAME;ENTITY;SUBMETHOD_DE-
SCRIPTION , if section covers a piece of source
code that is nested inside of a more complex
method. Submethod_description is a name (simi-
lar to the method name) that shortly describes
logic behind highlighted part of method.

 ◆ ANNOTATION_NAME;ENTITY;”annotation”
, if section is referring to an existing annotation.
Annotation_name is the name of annotation (in
our case Java annotation) and entity represents
entity which has been annotated by previously
mentioned Java annotation. The third part of the
comment is a constant value “annotation” which
indicates that a section is placed over Java anno-
tation.

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Information Security and Data Science

36

The form of this field is not standardized, but should
follow mentioned convention.

Fig. 5 shows an example of all of the three forms of
comment field.

Fig. 5. Possible forms of comment field

Part of the image marked with 1, is related to the first
case where annotation represents the whole method.
Blue box, numbered with 2, gives an overview of a piece
of source code which is taken as a section, but is located
within some other, more complex method. Number 3 is
Java annotation section.

As mentioned before, annotated source code is sent to
further processing, and its output is represented by JSON
file format. The snippet of the file is shown in Fig. 6.

Fig. 6. Snippet of a JSON output file

The output represents every piece of annotated
source code followed by an annotation and some ad-
ditional features. It keeps information about:

 ◆ fileName – name of the file that contains this piece
of annotated code

 ◆ content – text of the source code that is annotated
 ◆ sectionType – name of the predefined annotation,

assigned to the selected piece of code
 ◆ lineNumStart – line number where annotation be-

gins
 ◆ colNumStart - column number where annotation

begins
 ◆ lineNumEnd – line number where annotation ends
 ◆ colNumEnd - column number where annotation ends
 ◆ comment – field that expands annotation meaning

5. CONCLUSION

The main goal was to develop a software tool that
can easily be used for annotating source code. Following
the results of analysis of appropriate existing annotation
tools, we have chosen MAE tool for the basic annotation
task. Once the source code has been annotated, results
are held in XML files which all integrated represents an
input to our tool. This tool parses XML files and applies
a set of functions on original format in order to trans-
form it in a more convenient format for further analysis.
The result is represented in JSON file format.

Even though our DTD file contains predefined anno-
tations referring mainly to the structure of Java Spring
project, the tool is not strictly restricted to just one pro-
gramming language.

Regarding to all the work done, we have implement-
ed only the parts tightly connected to our specific task.

The current version of the tool has one practical
disadvantage which is that all the functionalities are
provided only as a pure source code. That fact pretty
much reduces the group of potential users and indicates
that extra effort should be put to make executable file
followed by graphic user interface (GUI) as to simplify
work with this tool.

Another important issue is that our work was used in
combination with MAE tool, which has its own specific
output format. In order to expand usage of our software
and make it compatible with other tools, writing a more
generic parser which could be able to parse different
types of files, should be considered.

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Information Security and Data Science

37

Finally, beside functionalities described in this paper,
there are still lots of possibilities for enhancement in the
field of text mining, extraction and interpretation of the
data. All of these are directions for future work.

REFERENCES

[1] Bo Pang and Lilian Lee, Opinion Mining and Senti-
ment Analysis, Foundations and Trends in Infor-
mation Retrievel, Vol. 2, No. 1–2, pp. 1-135, 2008.

[2] Vishal Gupta and Gurpreet S. Lehal, A Survey of
Text Mining Techniques and Application, Journal
of Emerging Technologies in Web Intelligence, Vol.
1, No. 1, pp. 60-76, 2009.

[3] Simone Teufel, Jean Carletta and Marc Moens,
An AnnotationSscheme for Discourse-level Argu-
mentation in Research Articles, Proceedings of the
Ninth Conference on European Chapter of the As-
sociation for Computational Linguistics. Strouds-
burg, PA, USA: Association for Computational
Linguistics, pp. 110-117, 1999.

[4] Oscar Corcho, Ontology Based Document Annota-
tion: Trends and Open Research Problems, Interna-
tional Journal of Metadata, Semantics and Ontolo-
gies, Vol. 1, No. 1, pp. 47-57

[5] Xian Wu, Lei Zhang and Yong Yu, Exploring Social
Annotations for the Semantic Web, Scotland , 2006,
ISBN:1-59593-323-9

[6] Maddalena Tacchetti, User Guide for ELAN Lin-
guistic Annotator, 2017, Available online: http://
www.mpi.nl/corpus/html/elan_ug/index.html

[7] Peter Wittenburg, Hennie Brugman, Albert Russel,
Alex Klassmann and Han Sloetjes, ELAN: a Profes-
sional Framework for Multimodality Research, In
Proceedings of the 5th International Conference
on Language Resources and Evaluation, pp. 1556-
1559, 2006.

[8] René Witte, Qiangquiang Li, Yonggang Zhang and
Juergen Rilling, Text Mining and Software Engi-
neering: An Integrated Source Code and Document
Analysis Approach, IET Software, Vol. 2, pp. 3-16,
2008.

[9] Ian H. Witten, Katherine J. Don, Michael Dewsnip
and Valentin Tablan, Text mining in a digital li-
brary, Vol. 4, No. 1, pp. 56-59, 2004.

[10] Eclipse official documentation, Resource Marker,
Available online: https://help.eclipse.org/neon/
index.jsp?topic=%2Forg.eclipse.platform.doc.
isv%2Fguide%2FresAdv_markers.htm

[11] Amber Stubbs, MAE and MAI: Lightweight Anno-
tation and Adjudication Tools, Proceedengs of the
5th Linguistic Annotation workshop, pp. 129-133,
2011, ISBN: 978-1-932432-93-0

[12] Kyeongmin Rim, MAE2: Portable Annotation Tool
for General Natural Language Use, In Proceedings
of the 12th Joint ACL-ISO Workshop on Interoper-
able Semantic Annotation, Slovenia, 2016.

