
SINTEZA 2017
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

90

Milan Tair1

1School of Informatics and Computing,
Singidunum University,
Belgrade, Serbia

Correspondence:
Milan Tair

e-mail:
milan.tair@gmail.com

SENDING FILE LICENSE INFORMATION THROUGH
HTTP HEADERS

INTERNET AND DEVELOPMENT PERSPECTIVES

Abstract:
This paper describes an implementation of a method of sending file license
information for files downloaded from a server. There are many files available
for download on the Internet and many of them were created by authors who
have published them under a certain license. In most cases, the license infor-
mation is lost or is unknown by the person downloading the file. Those files
may be images, video content, text documents, audio recordings, executables,
compressed archive files with software source code, educational materials of
different kinds etc. Currently, the only way to specify the license information
is to embed the license information in a file (overlay or stamp on an image,
footer text in a document, a separate file in a compressed archive of files, etc.)
or to show license information on the web page shown just prior to the step
where the download link is available. This proposed method does not provide
for a way to embed the license information into the original file, but instead,
it allows for the license information to be sent with the file from the server
to the user in the same HTTP response and vice-versa, from the server to
the client. The license is stored using the extended file attributes mechanism.

Keywords:
extended attributes, HTTP headers, license, concept.

Sinteza 2017
submit your manuscript | www.sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2017-90-96

1. INTRODUCTION

Simply put, a license is a permission to use the property of another per-
son [1]. There are many types of licenses that specifically relate to electronic
documents, such as images, videos, audio recordings etc. The license type
used for demonstration in this paper is a group called public copyright
licenses [2]. Other terms, such as free license, open copyright license are
used to refer to one kind of the public copyright license or another. Licenses
are important, especially for authors of original intellectual work as well as
original creative such as art, photography, music etc. Licenses, as methods
of giving permission to use protected intellectual and creative works, are
managed by a network of treaties and conventions [3] as well as national
laws in every country. For example, all countries of the European Union
are signatories of the Berne Convention for the Protection of Literary and
Artistic Works and Trade-Related aspects of Intellectual Property Rights
Treaty [4]. Treaties such as these recognise licenses as a method of giving
usage rights for otherwise protected works [5].

SINTEZA 2017
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2017
submit your manuscript | www.sinteza.singidunum.ac.rs

Internet and Development Perspectives

91

There are multiple ways for authors of original work
(licensors) to grant licenses to licensees [6]. The way
which is predominant on the Internet, whenever materials
which are subject of the license, is to send a copy of the
license agreement document issued by the licensor in the
form of a separate file, usually a text document.

In this case, the text document containing the license
text, which specifies the limitations and the conditions,
is supposed to accompany the licensed work at all times,
even when it becomes a part of a new whole. An example
of this text is the MIT license, which states that “The
above copyright notice and this permission notice shall
be included in all copies or substantial portions of the
Software.” [7] In most cases, it is not particularly hard to
include the original text of the license in the end product,
as it does not require much storage space. Since there are
no technical limitations for making the original license
accessible to interested parties, we must look at other dif-
ficulties that prevent us from complying with conditions
specified in the license. Regardless of reasons for not be-
ing able to comply, they ultimately consider it irrelevant.

However, there are situations when it is impractical or
impossible to include or display the license in a transpar-
ent manner. An attempt to better explain these situations
and license distribution problems is made in the next
section which illustrates a typical use case on the Internet.

2. WEB BASED IMAGE GALLERY USE CASE

An example which illustrates the problem of license
distribution is an implementation of an image gallery of
paintings or photographs by different authors. Painters
and authors of photographs presented in the gallery can
license their works for use in this manner of presentation
under different conditions. The website hosting the image
gallery would have to accompany every image with the
adequate text of the license or at least with a download
link where the visitor can open and view the license text
for the particular image. Aside from obvious impacts on
the design of the image gallery, there is another issue that
should be addressed in such situations. In case of public
copyright licenses, authors of works in question might
allow the public to freely use their work in their products
as long as they publish the license along with the derived
work, in case that the license allows for derivative work
to be made from the original [8]. In case the image gal-
lery does not provide a way to download both the image
and the license at once in a single container, eventually
the image will be posted on a different web page and its
license will be lost, as it is not immediately associated with

it. For the majority of public copyright licensed work, this
might not be seen as a potentially problematic situation,
but for commercial users it might. This is because some
licenses allow free use of licensed works for personal and
non-commercial use, but disallow or require payment
or purchase of works when they are going to be used
commercially [9].

These kinds of licenses that allow free use to one group
and limit it to another are generally not considered public
copyright licenses, in case of most electronically distrib-
utable materials or open source licenses [10], in case of
software.

Because there are versions of public copyright licenses
that allow and those that disallow derived works to be
made from the original work which the license applies to,
when an individual wants to use the work with modifica-
tions or in combination with others, which is treated as
derived work [8], he or she should familiarise with the
type of license under which the work is published. If the
file was downloaded and re-uploaded to different sources
multiple times, it can be hard to find its original source
and retrieve a copy of the license. Also, it may sometimes
be hard to even locate the author or an original work in
order to request a license directly.

3. IMPLEMENTATION

Although there are different methods of achieving de-
scribed license distribution, this paper presents a method
that does not require modifications to the application layer
communication protocol used for data transfer between
the server and the client and vice-versa. Instead, this
method uses an already described mechanism available
in HTTP (The Hypertext Transfer Protocol). Since HTTP
is an application layer protocol used to access content
from different locations on the web it is also capable of
transmitting certain meta-data about the content being
delivered [11] [12].

HTTP Request and Response Headers

This meta-data is usually transferred within a HTTP
response header [13]. HTTP headers are part of responses
that are always delivered first. Headers contain multiple
lines of text that describe the content that follows in the
response body. Among these lines of text is the informa-
tion such as the total size of the incoming response body
as well as its type (image, text, application, spreadsheet
document etc) as well as some supplementary information

SINTEZA 2017
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2017
submit your manuscript | www.sinteza.singidunum.ac.rs

Internet and Development Perspectives

92

used by the browser for content caching etc. [13] [14] The
header mechanism allows for defining arbitrary header
lines [13]. Taking advantage of this feature is a key part
of the license distribution method from the server to the
browser. Just like the server can use HTTP response head-
ers to embed the license information, the browser can use
an analogous mechanism available in HTTP Requests.
HTTP Requests are sent by the browser to the server. They
carry information such as the web page that the browser
wants to open or a file that the browser wants to download
from the server at the specified path. This information is
stored within the header section of the request, which is
always delivered first, just like the response. The header
consists of lines of text that describe the request as well
as the browser used to make the request. For example,
these header lines store information about the browser
vendor, name, version, operating system type, version,
build, available support for different scripts, languages,
encodings etc. [15] Whether a request has a body or not
depends on the HTTP method used. If data is being sent
using the POST method, the request contains the data
within its body section. When sending files, they are sent
as base64 encoded text of their content along with leading
lines of text specifying their original name and extension.
The protocol cannot be modified to include license infor-
mation in this section. This is why the method presented
in this paper utilises the possibility of adding user defined
lines to both the request and response headers in order
to send additional information about file licenses from
the server to the client and vice-versa.

Extended File Attributes

When uploading a file from a browser to the server via
HTTP, its content is sent, but it does not include license
information. Presumably, there is no way to embed the
license information into the file. This is true for most file
formats and the simplest example that proves that there
is at least one type of file that cannot have any additional
information embedded is a plain text document. All data
within it is principal and would not be ignored or skipped
by a parser or viewer. Based on this presumption, license
information must be stored elsewhere. Additionally, when
a file is being uploaded by the browser, it should be able
to extract this additional license information from its
storage space and include it into the request header as
explained in the previous subsection.

For this method, the storage space for information
about the license for a file is implemented using extended
file attributes. The ability to store extended file attributes

is a mechanism available in most major file systems used
today, such as EXT, NTFS etc. Although implementations
vary, system level application programming interfaces
provide support for handling extended file attributes
[16] [17].

File handling on the server side

For the demonstration of this method, the server and
the web page used to upload the file are configured in
such a way that the server side application that handles
file reception and sending is written in such a way to read
and write license information about the file into extended
file attributes.

The server is configured in such a way that the server
side application handles its dispatch to the browser when
a file is requested for download. Instead of merely send-
ing the content of the file as the server, the application
reads the extended file attributes of the requested file to
find license information. As the implementation is done
using PHP, appropriate PHP functions are used [18]. If
license information is found for the requested file, it sends
an additional response header line with the appropriate
content, specifying license information.

When receiving a file from the browser, the applica-
tion also reads the license information from the request
header. If license information is found, upon storing
the file on the file system, it additionally stores license
information in an apt extended file attribute. The next
time when this file is requested for download, the stored
license information is delivered in the response header
along with its content. Just like with reading the extended
file attributes, the application uses appropriate PHP func-
tions to write the attribute [19].

This way, the preservation of the license information
is achieved on the side of the server.

Delegating request handling to the server-side application

In order to have the server-side application handle all
requests as explained earlier, the server is configured to
pass all requests to it for processing. The web server is an
instance of the Apache2 Web Server application. There is
an apache server module called the rewrite module which
allows for request rewriting. Using the Apache2 server’s
per-directory configuration overwriting mechanism, all
requests are routed to a single server-side PHP applica-
tion that will handle them. Request routing is done by

SINTEZA 2017
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2017
submit your manuscript | www.sinteza.singidunum.ac.rs

Internet and Development Perspectives

93

specifying a request rewriting rule in the file named .htac-
cess [20] in the root directory of the web application. The
sample content of the .htaccess file used for the testing of
this concept is listed below.

Listing 1. The content of the .htaccess file used for the
demonstration.

As shown in Listing 1, all requested paths are dis-
patched to index.php for further processing. In the PHP
application, the original requested path can be found
in the server information associative array [21] at in-
dex REQUEST_URI. The HTTP request method can
be found in the server information associative array at
index REQUEST_METHOD. Custom headers sent with
the request can be found at indices starting with HTTP_
[21, p. #89567]. A part of the PHP application’s code that
gathers information about the original request path and
method is shown in the listing below.

Listing 2. Part of the application that acquires request
information.

Note that the server information index is not sanitised
with an appropriate filter in Listing 2. Ideally, the filter_in-
put function should be called with a proper filter for the
third argument, like the FILTER_SANITIZE_STRING
filter [22].

If the received request’s method is POST, the appli-
cation checks if there are files in the request body. If so,
these files are uploaded to a private directory on the server
and the application checks for license information in the
request header, matching the HTTP field names under
which these files were uploaded. Data about uploaded files
is located in the $_FILES global array in a standardised
format [23].

The proper name of the index in the server informa-
tion associative array, sent via HTTP headers, containing
uploaded file’s license information is formed by prefix-
ing HTTP_ to the HTTP POST data field name of the

particular file. If each file that is being uploaded is as-
signed a unique field name, their field names become
keys of the $_FILES array in PHP.

The code shown below illustrates a way to retrieve
license information from the request header for the sec-
ond uploaded file whose field name is not known by the
application.

Listing 3. Retrieving license information about the
second uploaded file.

If there is no license information for the particular file,
the variable remains empty. This indicates that the browser
did not include license information for the particular file.

After completing the upload process for a particular
file to its final destination on the server’s file system, the
application will execute a function that will write the
retrieved license information into extended file attributes
space for the particular file. For this demonstration, a
simple user space key name is used. The key name is user.
license. The following code shows how the application
stores license information about a recently uploaded file.
The uploaded filename and license information is stored
in appropriate variables called $destination and $license,
for the purpose of this example.

Listing 4. Storing license information in extended file
attributes storage.

Note that for the above shown code to work the xattr
Pear package must be installed on the server and the
Apache2 system user must be granted Access Control
Lists permissions to the directory where files are being
uploaded [24].

Finally, when the file retrieval scenario is being ex-
ecuted, the application would read the license informa-
tion from the requested files extended file attributes. If
this information available, it adds a license information
header line into the HTTP response header, thus send-
ing the license information to the browser along with
the content of the file. A sample code demonstrating this

SINTEZA 2017
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2017
submit your manuscript | www.sinteza.singidunum.ac.rs

Internet and Development Perspectives

94

process is shown in the following listing. The path to the
file being sent is stored in the variable $path.

Listing 5. Adding license information for the file being
sent to the header.

The code shown in Listing 5 follows all other codes
written in preparation for sending the requested file, such
as content type, size, download file name, flag to force
download and other header information specification.
The output buffer must remain empty at the time this
code gets executed to prevent contamination of the file
content sent in the response body. Preferably, the output
buffer should be cleaned before executing this code. This
can be done using the ob_clean function in PHP [25].

File handling on the client side

The client-side is more difficult to implement as it
requires the Internet browser to be aware of the additional
response header lines when receiving a file and should
be aware of the need to send additional request header
lines when uploading a file or a number of files. Also, the
browser should store extended file attributes along with
the file when saving it as well as reading the attribute
when uploading it to the server. Implementation of this
functionality is currently not possible without completely
rewriting the source code of the web browser and having
it natively support the license information retention via
extended file attributes.

However, there are two ways to test the method in
order to prove it as a valid concept. The first way is to use
an unsecure Internet browser with all security features
reduced to lowest settings in order to allow execution of
commands on the client side. These commands would be
used to write extended file attributes for the downloaded
file. The second way is to write an Internet browser simu-
lator as a client side application that would simulate file
upload and download. This application would have the
ability and permissions to execute system commands to
write extended file attributes. Both methods are unlikely
in the production scenario, especially the first which
requires lowering of security settings and using ActiveX

WScript.Shell objects to execute shell commands on the
client. This functionality is no longer supported by any
major Internet browser other than Microsoft’s Internet
Explorer. Even in the most current version of this browser,
this functionality is considered deprecated. [20] As it
is much simpler to write an application to simulate a
browser, this way is used to prove the concept of the
licence information preservation method presented in
this paper.

An Internet Browser Simulator

The Internet Browser Simulation application used to
demonstrate the proof of concept of the licence preser-
vation method provides two usage scenarios. These sce-
narios are file retrieval and file upload. In the first scenario
the application sends out an HTTP GET method request
for a file at a specified path. If the server includes license
information in the response header, the application stores
the license information into extended file attributes for the
downloaded file. In the second scenario the application
sends out a multipart/form-data HTTP POST method
request with the file included in the request and the li-
cense information for the file sent in the request header.

When the file retrieval scenario is executed, the HTTP
response is received and processed. The header is parsed
and a line starting with File-License is located, if present.
File license information is extracted from the header and
is kept in memory until the file download is complete.
When the file is downloaded, it is stored at an appropri-
ate location on the file system. After this, the program
executes an adequate, platform dependant, command
that stores license information by setting extended file
attributes or file properties for the downloaded file. Im-
plementation of this process varies depending on the
operating system and the used file system. Some file sys-
tems do not support extended file attributes or similar
mechanisms of storing additional meta-data about files
[27]. In these cases, alternative methods for storing file
license information are possible, but their implementa-
tion would go outside of the scope of this paper and the
method presented herein.

When the file upload scenario is executed, the pro-
gram reads file license information from extended file
attributes and creates a header line formed as a key-
value pair separated by a colon. The key part is formed
by adding the HTTP POST data field name for the file
being uploaded to License-. The value of the pair is the
license identifier. As mentioned earlier in the paper, open
copyright licenses are supported and used for this imple-

SINTEZA 2017
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2017
submit your manuscript | www.sinteza.singidunum.ac.rs

Internet and Development Perspectives

95

mentation. An example of the license information header
line is shown in the following listing.

Listing 6. An example of a file license information
request header line.

Listing 6 specifies that the file uploaded under the field
name picture_1 is published under a Creative Commons,
Attribution without Derivatives license, version 4.0 for
use in internationally available content. This means that
anyone who uses this file can share it freely, but they
cannot modify it in any way. Every type of license can be
abbreviated to a short string indicating the type, version
and any generalised restrictions that the license imposes
on the user.

Currently, this method is limited to a predefined set
of licenses that can be identified by parsing the license
string. This way, specialised software can show the full
text of the license, which is available on-line. A pos-
sible solution to this limitation is the introduction of a
specialised license type for own licenses, where the user
would specify a URI with license details. The presented
method does not allow this kind of content to be set as
a license information value of the file’s extended file at-
tribute because of security concerns.

4. CONCLUSION

In this paper, a method of storing and retrieving file
license information is presented. Also, it explains a work-
ing concept of a mechanism for sending the license infor-
mation over the network via the HTTP application layer
protocol by including it in HTTP request and response
headers. The proof of concept implementation utilised
extended file attributes mechanism of modern file systems
for storing license information for files on the server and
the client side. This mechanism is supported by major
platforms and file systems, but in some configurations it is
not enabled by default. It is explained that the major issue
in making this method common practice is the inability to
have modern browsers and operating systems supporting
it and making it achievable without the use of additional
software and special platform configurations on both cli-
ent and server sides. The browser simulation application
is programmed to add license information in additional
header lines and to retrieve them from response headers.

However, browsers cannot be easily modified to perform
this without rewriting their source code.

At this point, it is unlikely that this method can be im-
plemented, even through plug-ins or extensions installed
on the system or the browser, but if the method were to
be considered for adoption into a standard supported by
major browser vendors, its practical use would be possible.

It is the author’s opinion that there is potential for
further development of this technology, as well as obvi-
ous use for it in securing rights of creators of original
works who wish to impose certain limitations to the way
their work may be used. It is in no way the author’s wish
to exclusively support copyright and the expansion of
restrictions inflicted by copyright laws and regulations.
Instead, the aim of this work is to encourage the use of
public or open copyright licenses and to provide a way
to preserve information about the license under which
original work contained within a file was published by
its author.

REFERENCES

[1] S. French, License, Encyclopædia Britannica, inc.,
2003.

[2] Wikipedia contributors, “Public copyright license,”
Wikipedia, The Free Encyclopedia, 19 03 2017. [On-
line]. Available: https://en.wikipedia.org/wiki/Pub-
lic_copyright_license. [Accessed 24 03 2017].

[3] M. S. Denniston, “International Copyright Protec-
tion: How Does It Work?,” Bradley Arant Boult
Cummings LLP, 03 04 2012. [Online]. Available:
http://www.mondaq.com/unitedstates/x/171306/
Copyright/International+Copyright+Protection+
How+Does+It+Work. [Accessed 11 02 2017].

[4] K. Rainer, Copyright Issues in the European Union
- Towards a science - and education-friendly copy-
right, 2013.

[5] Appendix 1 to the Berne Convention for the Protec-
tion of Literary and Artistic Works, Paris, 1971.

[6] H. Ward Classen, A Practical Guide to Software Li-
censing for Licensees and Licensors: Analyses and
Model Forms, Chicago: American Bar Association,
2005.

[7] Massachusetts Institute of Technology, The MIT
License, https://opensource.org/licenses/MIT.

[8] V. Lindberg, Intellectual Property and Open Source:
A Practical Guide to Protecting Code, Sebastopol:
O’Reilly Media, Inc., 2008.

[9] Creative Commons, “NonCommercial interpreta-
tion,” 25 09 2014. [Online]. Available: https://wiki.
creativecommons.org/wiki/NonCommercial_inter-
pretation. [Accessed 02 03 2017].

SINTEZA 2017
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2017
submit your manuscript | www.sinteza.singidunum.ac.rs

Internet and Development Perspectives

96

[10] C. DiBona, M. Stone and D. Cooper, Open Sources
2.0: The Continuing Evolution, Sebastopol: O’Reilly
Media, Inc., 2005.

[11] R. Steinmetz and K. Nahrstedt, Multimedia Appli-
cations, Springer Science & Business Media, 2004.

[12] M. P. Clark, Data Networks, IP and the Internet:
Protocols, Design and Operation, John Wiley &
Sons, 2003.

[13] D. Gourley and B. Totty, HTTP: The Definitive
Guide, O’Reilly Media, Inc., 2002.

[14] G. Held, A Practical Guide to Content Delivery Net-
works, Second Edition, CRC Press, 2010.

[15] F. Scholz, T. and M. D. Network, “Request header,”
Mozilla Developer Network, 19 06 2016. [Online].
Available: https://developer.mozilla.org/en-US/
docs/Glossary/Request_header. [Accessed 11 02
2017].

[16] Noite.pl, File system extended attributes and kernel
capabilities: Linux Basic. AL1-043, NOITE S.C.

[17] M. Minasi, D. Gibson, A. Finn and W. Henr, Mas-
tering Microsoft Windows Server 2008 R2, John
Wiley & Sons, 2010, p. 483.

[18] The PHP Group, xattr_get — Get an extended at-
tribute, The PHP Group.

[19] The PHP Group, xattr_set — Set an extended at-
tribute, The PHP Group.

[20] The Apache Software Foundation, “Apache HTTP
Server Tutorial: .htaccess files,” 2017. [Online].
Available: https://httpd.apache.org/docs/2.4/howto/
htaccess.html. [Accessed 30 01 2017].

[21] The PHP Group, “Predefined Variables - $_SERV-
ER,” The PHP Group, [Online]. Available: http://
php.net/manual/en/reserved.variables.server.php.
[Accessed 04 02 2017].

[22] The PHP Group, “Filter Functions - filter_input,”
The PHP Group, [Online]. Available: http://php.
net/manual/en/function.filter-input.php. [Accessed
04 02 2017].

[23] The PHP Group, “Predefined Variables - $_FILES,”
The PHP Group, [Online]. Available: http://php.
net/manual/en/reserved.variables.files.php. [Ac-
cessed 04 02 2017].

[24] “Access Control Lists,” Arch Linux Documenta-
tion, 05 11 2016. [Online]. Available: https://wiki.
archlinux.org/index.php/Access_Control_Lists.
[Accessed 06 02 2017].

[25] P. Hudson, PHP in a Nutshell: A Desktop Quick
Reference, O’Reilly Media, Inc., 2005, p. 182.

[26] Microsoft, “VBScript is no longer support-
ed in IE11 edge mode,” [Online]. Available:
https://msdn.microsoft.com/en-us/library/
dn384057%28v=vs.85%29.aspx?f=255&MSPPErr
or=-2147217396. [Accessed 29 01 2017].

[27] freedesktop.org, “Guidelines for extended attrib-
utes,” 18 05 2013. [Online]. Available: https://www.
freedesktop.org/wiki/CommonExtendedAttrib-
utes/. [Accessed 06 02 2017].

