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Abstract: 
Recently, it was shown that auditory brain-computer- interface (BCI) clas-
sifications can be performed in real life environments. However, the need 
for initial training of existing supervised classifiers on large parts of that data 
discourages practical application. Reducing calibration time of BCI analyses 
would benefit short-term interactions. The current paper presents a carefully 
simulated study of P300 Event-Related-Potential (ERP) data to illustrate the 
performance of tensor decompositions for data-driven classification of the 
P300 effect. The aim of this study was to investigate whether coupling of a 
high- and low-noise dataset can enhance data-driven clustering of the P300. 
Imposing structure and linking the decompositions of higher dimensional data 
arrays called tensors was hypothesized to increase the classification accuracy. 
For the highest noise dataset (SNR=0.60), we demonstrated that imposing 
a coupling to datasets with a lower noise level can significantly improve the 
extracted clusters to classify target from non-target trials to achieve equal 
accuracy to the widely used supervised regularized Linear-Discriminant-
Analysis  (rLDA).  We  evaluated  the performance of Canonical Polyadic 
Decomposition (CPD) and decomposition in multilinear rank Lr,Lr,1 terms 
(LL1). These structured models do not need a training phase or label informa-
tion, although they require additional data. Finally, we illustrated the potential 
of the tensor approach for the analysis of simultaneous EEG recordings in 
which the trial mode is shared between subjects. Without a priori knowledge 
of the signal of interest, the tensor-based models successfully separated the 
two stimuli classes in the highest noise scenario up to 100% for coupling 
of five simulated subjects. These results highlight the benefits of exploiting 
structure in the stimuli and experimental setup (e.g., conditions or subjects).
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1.  INTRODUCTION

Electroencephalography (EEG) is a measurement of electrical activities 
in the brain which are caused by large neuron group activity. Various elec-
trodes positioned on the scalp record electrical activity, providing excellent 
resolution of time and enabling the observation and identification of specific 
areas of the brain that are active at any given point, even on sub-second 
timescales. Research frequently concentrates on distinguishing between 
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states of the brain relative to events, e.g., the presentation 
of images (visual) or sounds (auditory). These different 
states can be utilized to control a device through a brain-
computer interface (BCI). 

The most frequently studied feature in BCIs with EEG 
is the P300 Event-Related Potential (ERP) which is a posi-
tive deflection around 300-500ms in the EEG, produced 
as a response to both task-relevant and rare stimuli [1]. 
BCIs were originally conceived to function as access to 
computers for patients that are locked-in. In recent times 
they have also been recognized as having potential ap-
plications for users that are healthy–certainly if they are 
not restricted by the bounds of conventional laboratory 
scenarios [2]. The majority of studies on BCI rely on 
supervised machine-learning techniques to distinguish 
task-relevant stimuli [3]. Essentially, a substantial part 
of the data is discarded for model training, rather than 
interacting with the BCI, which comes at the cost of 
consuming users’ time and effort. The use of calibration-
free classifiers could increase the application potential 
significantly by removing this specific training phase. 

As it is possible to naturally represent ERP data as a 
third- order tensor (i.e., channels × time × trials), it may 
be beneficial to exploit this multidimensional structure 
in the analysis. The existence of a specific spatiotemporal 
pattern which underlies the target trials, and is not present 
in the non- targets, can be elegantly exposed by means 
of tensor decompositions [4]. These optimization-based 
methods enable a priori knowledge of the data (e.g., noise 
levels, Expected ERP) and stimulus protocol to be incor-
porated in the analysis via constraints [5, 6]. 

Canonical Polyadic Decomposition (CPD) and de-
composition in multilinear rank Lr,Lr,1 terms (LL1) are 
known to have the ability to classify the data of single-
trial ERP in ways that are completely data driven [4]. In 
the current study these models are evaluated to derive 
meaningful P300 ERP-related components from coupling 
of various datasets with different levels of signal-to-noise 
ratio (SNR). Coupling between the datasets is expressed 
by using one or more common factors in the different 
factorizations of the tensor models. The coupling of dif-
ferent factors and the influence of noise on the derived 
clustering of the P300 is evaluated on simulated EEG 
data (i.e., 15 datasets of 200 trials) of four different noise 
levels (SNR-range: 3.73 – 0.60) which mimic realistic set-
tings; for example, the visual P300 in lab recordings [7] 
as well as auditory P300 in recent mobile EEG recordings 
[8]. The tensor decomposition results were compared to 
that of the widely utilized supervised rLDA classification 
[e.g., in 4,8].

The single CPD and LL1 models are shown to be able 
to separate ERP subcomponents such as the N100 and 
P300 and provide reliable differentiation of target and 
non-target stimuli for low noise levels. For the highest 
noise levels, coupling of a high- and low-noise dataset 
enhances the data-driven clustering of the stimuli signifi-
cantly. Moreover, we illustrate different ways of coupling 
the various factors in the tensor decompositions to tailor 
the model to specific usage scenarios (e.g., multi-user 
recordings [9,10]).

In the next section we explain the simulated data 
generation and characteristics of the signal and noise. 
Consecutively the preprocessing steps performed are 
elaborated, followed by a description of the (coupled) 
tensor models that are considered in the analysis. Finally, 
the results of the tensor models and reference method are 
presented and discussed.

2.  DATA GENERATION AND 
PREPROCESSING

The simulated data were generated using the BESA 
simulator (www.besa.de/products/besa-simulator/). This 
simulator utilizes a spherical four-shell head model to 
generate EEG data based on predefined dipoles [11]. 
Five dipoles were used for the generation of P300 ERPs 
as target trials, which are depicted in Fig. 1. Two dipoles 
with a frontal focus correspond primarily to the N100 
effect, a central dipole to the N200 and P3a effects and 
finally two posterior dipoles that represent a P300-like 
deflection around 450 ms after stimulus presentation. 
Consecutively, the two dipoles corresponding to the P300 
(i.e., dipole 4 and 5 in Fig. 1) were diminished in ampli-
tude to obtain a second set of EEG data without explicit 
P300 effects, hereafter referred to as the non-target Trials. 
Differentiating between the target and non-target trials 
is the primary aim in BCI approaches, and the simulated 
data resembles an auditory oddball paradigm [e.g., 8, 12]. 

The EEG data were simulated at 24 channels corre-
sponding to standard 10-20 locations: FP1, FP2, Fz, F7, 
F8, FC1, FC2, Cz, C3, C4, T7, T8, CPz, CP1, CP2, CP5, 
CP6, TP9, TP10, Pz, P3, P4, O1 and O2. The data were 
generated with a sampling rate of 500Hz. The topography 
and sampling rate are identical to that of recently pub-
lished mobile EEG studies ([12]). To obtain realistic data, 
several types of noise were added to the model. First, the 
amplitude of the sources is modulated randomly to differ 
up to 50% in between trials. Second, EEG-like broadband 
noise (i.e., as implemented in the BESA simulator) was 
added to the dataset to simulate background activity 
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unrelated to the simulated ERP events. The noise had a 
relative high correlation between signal amplitudes from 
electrodes that were close together. noise-free data were 
generated for reference purposes, and in addition four 
different proportions of noise were added to the ERP 
effects. The noise amplitude is scaled by its root mean 
square (RMS) value to match noise values of 0.5, 1.0, 1.5 
and 2.0 uV, and alpha activity at 8-12Hz was generated 
and added to the signals with an amplitude that was 50% 
of the overall noise RMS value per trial. The four noise 
levels corresponded to SNR values of 3.73, 1.75, 0.97, 
0.60 from high to low, respectively. The signal-to-noise 
ratio (SNR) was calculated following previously described 
procedures in the literature as the ratio of the maximum 
P300 peak and the pre-stimulus RMS of the EEG. 

We simulated 15 datasets of 100 target and 100 non-
target Trials for each of the four noise levels and the noise-
free case. One trial lasted 1000ms in which the stimulus 
onset was simulated at 200ms. The data were preprocessed 
offline using EEGLAB and MATLAB (Mathworks Inc., 
Natick, MA). The EEG data were 0.5-20 Hz band-pass 
filtered and baseline- corrected (−200–0 ms) after re-
referencing to the mean of TP9 and TP10. To eliminate 
the effect of outliers in the data, we performed a Z-score 
normalization per channel and trial. This way, the overall 
variance is more uniform before analyzing the data with 
the tensor models. 

The average ERPs at channel Pz for the target and non-
target stimuli are presented in Fig. 2 for each of the noise 
levels. The corresponding SNR values illustrate that the 
last two noise levels portray situations in which the noise 
is equal to or higher than the signal of interest (i.e., P300), 
mimicking realistic mobile EEG P300 scenarios [8].

Fig. 1. Overview of the dipole spatial location on a top-
down view (left) and temporal characteristics of each 
dipole on the right. The blue lines depict the temporal 
progression in the Target trials and the orange for the 

Non-Target trials. Image obtained from the BESA simu-
lator (available online at www.besa.de/products/besa-
simulator) and modified to highlight the P300 source.

Fig. 2. Average ERPs at Channel Pz for the noise free case (most left) and  
the four increasing levels of noise from left to right respectively. 
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3.  TENSOR BASED MODELS

CPD

Multidimensional signals can be decomposed by the 
CPD as a sum of rank-1 terms [13]. For the three-dimen-
sional case, the CPD will decompose a tensor X as follows:

with R representing the number of components, ar, br, 
and cr, the signatures of every atom in each of the modes, 
and ε, the model error. Each mode has a specific signa-
ture which characterizes the extracted component; in 
the three- dimensional tensor representing the ERP as 
a channel × time × trials structure, the spatial distribu-
tion of the different atoms would be contained in ar, the 
time courses would be contained in br, and a strength 
of the space-time signature across trials would be given 
in cr. An example of a decomposition with CPD is il-
lustrated in Fig. 3. This represents the decomposition of 
a dataset of intermediate noise level (SNR = 1.75). The 
first component extracts characteristics that relate to the 
N100 ERP with a frontal central focus, and the second 
to the P300 effect with a posterior topography. The last 
component reflects an alpha noise source. From the third 
mode (i.e., trial mode), it can be noted that the second 
component clearly differentiates between the two classes 
in the data. In this dataset the trials could be separated 
with 92% accuracy. 

The CPD model is trilinear, which means that each 
mode's vectors are proportional to each other within a 
rank-1 component. Generally, if the data follows a rank 
R structure, the decomposition is unique up to permuta-
tion and scaling of the extracted components [14]. The 
size of the data tensor for the single CPD and single LL1 
models is 24 × 500 × 200 for the channels time and trial 
dimension, respectively.

LL1 decompositions

Although CPD provides interpretable components, 
the model can be too restrictive for some applications, 
as it does not model all variability in the data [4, 15]. 
LL1 allows the modeling of more variation in two fac-
tors (denoted by Lr) [16,17]. While for the CPD model 
the time course of a certain component is the same on 
all channels, LL1 will allow some variation of the time 
course on the different channels. The LL1 approximates 
a third-order tensor by a sum of R terms, each of which 
is an outer product of a rank-Lr matrix and a nonzero 
vector. A three-dimensional data tensor X can be decom-
posed by a LL1 as:

The tensor X is the sum of the outer products of a rank 
Lr matrix (the product of matrices Ar and Br-transposed) 
and the component vector cr, with R representing the 
number of components and ε, again the model error. Simi-
lar to the rank, Lr should be set a priori. In our example 
we allow the spatial and temporal mode to be of higher 
rank as compared to the CPD models. This is expected 
to capture time and waveform variability more accurately 
between the target and non-target effects as constituted 
in the trials. The interpretation of the trial dimension c 
is similar as to the one from CPD model. An overview 
of tensor decompositions used in signal processing ap-
plications is presented in [18] and [19].

Coupled Decompositions

Instead of decomposing a single dataset, CPD and 
LL1 can be used to express coupling between datasets. A 
so-called coupled decomposition of two datasets can be 
achieved in a framework known as Structured-Data Fu-
sion (SDF) which is a specific syntax to impose structure 
on factors in the tensor decomposition [5, 6]. For example, 
we can impose equality between the spatial factors of two 
decomposed datasets of different SNR level. This is illus-
trated for the CPD case in the schematic below, indicating 
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equality between both the spatial and temporal mode in 
the two datasets. In the current work, we studied the ef-
fectiveness on the P300 separation when the highest noise 
condition was coupled with a lower-noise-level dataset. 
This is based on the assumption that the underlying source 
model for the P300 in both datasets is (roughly) similar 
and only the variability over trials (over the course of 
the experiment) is different. For both the CPD and LL1, 

we evaluated the clustering on the lowest SNR dataset 
when jointly decomposed with higher SNR datasets. The 
decomposition of both datasets happens simultaneously 
and without any additional stimulus information. The 
size of the coupled model is comprised of 2 data tensors 
of dimensions 24 × 500 × 200 for the channel, time and 
trial dimension, respectively.

Fig. 3. Example CPD outcome of a dataset from noise-level 2, illustrating the decomposition with the corresponding 
spatial, temporal and trial modes for a model or Rank = 3. The components depict the N100, P300 and noise  

signature from left to right, respectively. The first half of the trials corresponds to the target Trials, the latter to  
non-targets. Component 2 is able to separate the classes by 92%, based on the factor weights of the third mode. 

Fixed-Factor Decompositions

Tensor decompositions can be applied in a supervised 
way by transferring factors between models. For example, 

a spatiotemporal signature from one CPD or LL1 model 
from a low noise dataset can be chosen and imposed on 
the decomposition of a high noise dataset. This way, we 
aim to achieve a better clustering of the target trials in 
contrast to the non-targets in the high noise conditions. 
This so-called fixed- factor decomposition requires the 
datasets to be decomposed consecutively and relies on 
identifying the most useful component in the first decom-
position that is to be transferred. This concept is illustrated 
in the schematic below. Note that the top decomposition 
is evaluated first and the best temporal- spatial pattern is 
transferred to the second model. The size of each data-
tensor is 24 × 500 × 200 (channels, time and trial), and 
each is decomposed independently of the other.
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Simultaneous Recordings (multi-user BCI)

Besides coupling or fixing factors of the spatial or 
temporal modes, one could opt for coupling the trial 
mode of two or more datasets. This could be useful for a 
specific type of paradigm that is gaining momentum in 
the past years in the field of EEG research and is com-
prised of simultaneous recordings of multiple subjects. 
One example of such paradigm is the control of a BCI 
Space Invaders game by two subjects [9] and another, the 
simultaneous analysis of EEG in response to video in a 
classroom environment [10]. Since these subjects may 
have different spatiotemporal patterns, the spatial and 
temporal modes are left unconstrained. However, the 
trial (i.e., time) dimension is assumed to be identical, as 
the subjects are doing the same task at the same time. The 
schematic below illustrates the constrained CPD model 
in which the third (trial) mode is shared between data-
sets. This way the CPD or LL1 model derives the shared 
information between two or more of such datasets on the 
trial factor. The additional structure in the trial factor is 
employed to increase the overall SNR. The performance of 
this coupling is evaluated in the current study by combin-
ing up to five datasets of the highest noise scenario (i.e., 
SNR = 0.60) to increase the overall distinction between 
target and non-target trials. The size of data that is used in 
the decompositions is 1 to 5 times a single subject dataset 
of dimensions 24 × 500 × 200 that represent the channel, 
time and trial dimension, respectively.

Decomposition Parameters

In this study, all CPD and LL1 models were computed 
with the nonlinear least squares (NLS) algorithm in the 
publicly available Tensorlab 3.0 toolbox [5]. These meth-
ods are dependent on several parameters of which the 
following are evaluated: the initialization of the model, 
the number of iterations of the NLS algorithm, the num-
ber of components (i.e., Rank R) and, specifically for 
LL1, the value of L. Unless stated otherwise, all models 
were initialized randomly. By default, all computations 
were allowed up to 1000 iterations for the NLS. Post hoc 
evaluation of the number of iterations did not improve 
the results and these results were therefore omitted be-
cause of space limitations. In the case of LL1, values of 
L>3 showed no clear differences on an extra simulated 
dataset and therefore a value of L=3 was chosen for all LL1 
models in the current analysis. The Rank of the models 
was evaluated explicitly for Ranks of 1 to 10.

Clustering and Classification

The factor loading on the trial dimension can be used 
to naturally obtain two clusters (e.g., Fig. 3, Component 
2). Accuracies were obtained by taking the median value 
of the trial factor as threshold for each component in 
the decomposition to obtain two clusters. The resulting 
classes are compared to the true labels, and this results in 
a clustering percentage for each component. This method 
only allows for separation of the trials into two classes; it 
does not identify which class corresponds to the target or 
distractor stimuli. Nevertheless, identifying the stimulus 
may be derived from the corresponding spatiotemporal 
signature in the other modes. Evaluation of the Tensor-
based clustering is achieved by a comparison to those of 
rLDA, which is one of the widely used P300 classification 
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algorithms [e.g., 8, 12]. This requires a separate training 
phase to calibrate the classifier function. Essentially a 
substantial part of the data is discarded for model training, 
rather than interacting with the BCI, which comes at the 
cost of consuming users’ time and effort [3]. The basic 
LDA feature set comprised seventeen 47ms data bins on 
all 12 electrodes between 0–800 ms, which is reported 
repeatedly as an efficient feature set for classifying the 
P300 [8, 12]. Shrinkage regularization as implemented in 
BCILAB is used for rLDA classification. Per subject, the 
classifiers are trained based on five-fold cross-validation 
procedure.

4.  RESULTS

Single Dataset Models

The grand average classification accuracies are sum-
marized in Table 1. For the conditions ‘without noise’ and 
‘lowest noise level’ (SNR = 3.73), all models performed 
near 100% for separating the target from non-target tri-
als. In the case of an SNR of 1.75, the clustering was on 
average correct for 92% of the trials, for all methods. The 
two highest noise cases (noise 3 and 4) were significantly 
better clustered by the supervised rLDA, as opposed to 
the LL1 models, (t14= 5.93, p<0.0001) and (t14= 14.33, 
p<0.0001) respectively. The CPD results were on par 
with the rLDA for the noise 3 case, even though they 
were lower in the highest noise data (t14= 4.53, p<0.001). 

Method

Average Clustering % (± SD)

Noise-
Free

Noise 1
SNR =

3.73

Noise 2
SNR =

1.75

Noise 3
SNR =

0.97

Noise 4
SNR =

0.60

Supervised
rLDA

100.0
(±0)

99.0
(±0.9)

91.8
(±1.3)

85.6
(±3.0)

78.9
(±2.9

uncoupled
CPD

100.0
(±0)

99.6
(±0.5)

92.6
(±2.0)

85.0
(±3.0)

71.0
(±7.1)*

uncoupled
LL1

100.0
(±0)

99.3
(±0.6)

91.9
(±1.9)

73.3
(±7.5)*

62.9
(±3.2)*

Table 1. Average accuracies of the rLDA, CPD and 
LL1 method for discriminating between target and 

non-target trials for each of the five different levels of 
noise. Values with an asterix were significantly lower as 

compared to rLDA (p < 0.001).

Fig. 4 illustrates the influence of the Rank of the ten-
sor models on the clustering percentage. The number of 
components was found to be optimal for 3-4 components 
over all noise levels. This is similar to previously described 
results on clustering mobile EEG data with CPD [20]. 
LL1 outperforms the CPD results for models of only one 
component for all noise levels. Similarly, the LL1 achieves 
better clustering for higher component numbers (i.e., > 
5) for the lowest noise level. A remarkable finding is that 
the LL1 models performed significantly lower on the two 
highest noise levels, as compared to CPD if the Rank of 
the models is larger than 1.

Transferring Spatial and Temporal factors

Transferring the most discriminative spatial and tem-
poral factor from a low-noise dataset to the decomposi-
tion of the highest-noise dataset improves the clustering 
for both the CPD and LL1 up to 83% and 81%, respec-
tively. This procedure can be best compared to transfer-
ring knowledge of the same subject in between different 
conditions or recordings. Fig. 5 illustrates the clustering 
results on the highest noise level and the origin of the 
fixed component: the noise-free case, or one of the other 
three noise levels. Surprisingly, the transferred spatial 
and temporal factor from the noise-free (i.e., noise level 
0) component is not very efficient in the highest noise 
dataset, as is evident from the blue line in Fig. 5. Note 
that these results are not dependent on the number of 
components. This is to be expected, as the first component 
is always fixed and already contains a good estimate of the 
P300 signal of interest, and therefore the other compo-
nents are mostly filled by noise. For almost all presented 
fixed factor decompositions, the fixed component was the 
most discriminative. This removes the need for compo-
nent selection but requires label information of the data 
tensor that the factors were taken from, rendering the 
method supervised.
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Fig. 5. Accuracies of CPD and LL1 with a fixed factor 
for the highest noise condition. Each line represents 

a different noise level from which the best spatial and 
temporal factors were identified to be fixated in the 

highest noise dataset decomposition.

Coupled models of low and high noise

With the coupled models, we aim to increase the clus-
tering of the highest noise level, as here, the single-model 
results fall short of supervised alternatives such as the 
rLDA presented here. Clustering the highest noise con-
dition (SNR = 0.60) through a structured coupled CPD 
with a dataset from one of the lower noise-level datasets 
resulted in a clustering percentage of 81.9% (± 2.0), 80.3% 
(±2.7), 79.4% (±2.5) and 78.3% (±3.0) for the lowest to 
highest noise dataset. These values are significantly higher 
compared to the single CPD model (i.e., 71.0% (±7.1)). 
Similarly, the single model LL1 estimate (62.9% (±3.2)) 
could be improved substantially for the noisiest dataset 
when coupled to one of the four lower- noise-level sets, 
82.9% (± 2.4), 82.1% (±3.3), 75.7% (±3.7) and 64.2% 

(±3.4) from low to high noise, respectively. Fig. 6 depicts 
the influence of the noise level of the dataset that was 
jointly decomposed and the dependency on the Rank of 
the models for CPD and LL1. Specifying the number of 
components appears more crucial for LL1 as compared 
to CPD: for the former, higher ranks are required when 
coupled to noisier level datasets (c.q. noise level 0-1 to 
2-3). In summary, these results are similar to the fixed-
factor results presented in the previous paragraph without 
the need of specific label information.

Fig. 6. The CPD and LL1 clustering accuracy of the 
highest-noise-level dataset if it was coupled to one of 
the lowest four noise levels (indicated as level 0-3) in 

contrast to the number of components  
in the decomposition.

Coupling in the Trial Dimension

The coupling of several datasets of the highest noise 
level with a shared trial mode results in improved clus-
tering of the stimuli in the highest noise condition.  

Fig. 4. Average clustering percentage of the CPD and LL1 method for each of the four noise levels, dependent on the 
number of components considered in the models.
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Fig. 7 illustrates the clustering percentage in relation to 
the number of coupled datasets. Evidently there is a linear 
increase in the number of datasets that are combined 
and provide near 100% separation in the case of five 
simultaneously decomposed datasets. Moreover, these 
results are not dependent on the number of components 
as long as R >1.

Fig. 7. Clustering percentage in relation to the number 
of coupled datasets in the trial-mode for the highest-

noise-level dataset (SNR = 0.60). Each line corresponds 
to a different Rank.

5.  DISCUSSION AND CONCLUSION

Recently, it was shown that auditory BCI classifica-
tions can be performed in real life environments [8, 12]. 
However, the need for initial training of supervised clas-
sifiers on large parts of that data discourages practical 
application. Faster interaction with a BCI would likely 
increase user interest and engagement. Here, we explored 
the incorporation of structural information into the analy-
sis in several ways to increase data- driven clustering of 
target and non-target trials. The current study carefully 
simulated P300 ERP data from 15 subjects at 5 different 
noise levels, mimicking realistic settings. We showed 
that a simple single CPD or LL1 model is able, without 
supervision, to separate signal and noise in simulated 
single- trial P300 ERP data (e.g. the components that 
represent the N100, P300 and noise in Fig. 3). At low noise 
levels, these models perform equally to that of supervised 
rLDA, which requires specific label and training phases 
(table 1.). In contrast, the CPD and LL1 models lack the 
ability to achieve high performance for low SNR datasets. 
For the highest-noise dataset (SNR=0.60), we illustrated 
that imposing a coupling to datasets with a lower noise 
level can significantly improve the extracted clusters to 
classify target from non-target trials to achieve equal 
accuracy to rLDA for both the CPD and LL1 (Fig 6.).  

These structured models function without a training 
phase or label information, although they require ad-
ditional data. Transferring a derived spatiotemporal 
component from a low- to high-noise dataset resulted 
in a similar improvement of the clustering, albeit in a 
supervised way; the best component on the low noise 
dataset has to be determined beforehand. Finally, we il-
lustrated the potential of coupled models for the analysis 
of simultaneous EEG recordings in which the trial mode 
is shared between subjects. Without a priori knowledge of 
the signal of interest, the tensor-based models successfully 
separated the two stimuli classes in the highest noise sce-
nario up to 100% for coupling of five simulated subjects. 

The finding that CPD and LL1 models did not surpass 
the rLDA classification suggests that the limiting factor 
in this case for the separation is the lack of task-related 
P300 ERPs. Further extension of the presented approaches 
could be to identify which of the extracted clusters rep-
resents the target stimuli, based on the spatiotemporal 
modes of the component. Adding additional constraints 
(e.g. independence or sparsity) on the factors in the ten-
sors models might improve the clustering performance 
[21]. The LL1 models estimate a higher number of pa-
rameters, compared to the CPD (at equal Rank). Whether 
this is the cause of the lower results at higher noise levels 
compared to CPD remains an unanswered question. One 
potential reason could be that the LL1 models over-fit to 
the noise, because, at these SNR levels, the level of noise 
is substantially higher than the P300 signal. 

In summary, these results highlight the benefits of 
exploiting structure in the stimuli and experimental setup 
for classification of single-trial EEG data.
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