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Abstract: 
In this paper a two-layer feedforward network is studied, a network that 
stores an association between two sequences in the two layers. Our work 
shows that neuronal sequences in one area can robustly trigger sequences 
in the second area if the association between the sequences is stored in the 
network. A more detailed incorporation into the biological aspects of neural 
network in the network dynamics may help to improve neutral networks in 
engineering applications.
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1.  INTRODUCTION

Replay of sequential activity patterns in the hippocampus has been 
proposed as a mechanism for the consolidation of episodic memories 
[1]. It is thought that replay sequences originate in one area and trigger 
neuronal sequences downstream, e.g., in other area, like neocortex [2]. 
However, under physiological conditions internal noise or external inter-
ference are likely to corrupt the precise sequential ordering of neuronal 
sequences. It remains an open question how robustly the activation of a 
corrupted sequence in one brain area can induce the associated sequence 
in the second area. Here we study this question in a two-layer feedfor-
ward network that stores the association between two sequences in the 
two layers. While keeping the connection weights fixed, we degrade the 
input sequence incrementally and observe the sequence induced in the 
output layer. We measure the similarity of sequences with the Spearman 
rank-order correlation. Surprisingly, we find that even when the input 
sequence is highly corrupted, the retrieved output sequence is similar to 
the associated sequence. This result is specific to the stored association 
and not found for random sequences. Our work shows that neuronal se-
quences in one area can robustly trigger sequences in a second area if the 
association between the sequences is stored in the network. Incorporating 
biological details of neural network improves robustness of association 
of neural network [3].
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2.  MODEL

Network Dynamics

We use neural network model with two layers con-
sisting of excitatory and inhibitory units [4]. These units 
represent populations of neurons and have heterogene-
ous parameters, unless otherwise stated in the Results. 
Excitatory units in the 

Fig. 1. Two-layered feedforward neural network

first layer send projections to excitatory (wE1E1) and inhibi-
tory (wE1I1) units in the first layer, as well as to excitatory 
(wE1E2) and inhibitory (wE1I2) units in the second layer (Fig. 
1). Within the second layer, there are recurrent excitatory 
connections (wE2E2) and excitatory to inhibitory connec-
tions (wE2I2). Here we only briefly sketch the model; the 
full description can be found in [4]. The dynamics of the 
activity xj of excitatory unit j in the first layer is given by

 
(1)

where eτ is time constant of the excitatory unit, the dot 
represent the derivative with respect to time, f is sigmoid 
function, and vj(t) is the firing rate of population j. The 
seven terms in the function f represent different inputs 
to the unit. These are, firstthe self excitation of popula-
tion j with its connectivity aee. Second, the inputs from 
other excitatory units with a delay of        weighted by 
connection weights cjk and a general excitability C. Third, 
inputs from inhibitory units with activity yak weighted 
by random  static connection strength vjk. and a general 
excitability from inhibitory units aei. Fourth, an adapta-
tion current zj weighted by a constant d with dynamics

(2)

where        is the decay rate and b its rate of growth. The fifth 
term is noise defined by an Ornstein-Ulenbeck process

 
(3)

where       is white noise process with zero mean and unit 
standard deviation (std). The parameter      allows us to 
adjust the noise level. The sixth term Ij represents external 
inputs. Finally,      is the excitatory threshold.
Recurrent connections undergo spike-timing dependent 
plasticity (STDP)

(4)

where        is a time constant, PSTDP represents potentiation 
of the connection and DSTDPdepression. The term      is a 
reducing factor, which provides stability to the dynamics. 
More details can be found in [4]. 
The dynamics of inhibitory units are described by

(5)

where aie represents the strength of the excitatory to in-
hibitory connections. The notation [x]+ is equivalent 
tomax(x,0). Qjk is the static strength of individual excita-
tory to inhibitory connections, and      is the threshold to 
activate inhibitory units. 
The dynamics of excitatory units in the second layer are 
similar to the first layer with the addition of feedforward 
inputs 

  

(6)
where parameter g is a gain term, and Kjk is the strength 
of the connection from excitatory unit k in the first layer 
to excitatory unit j in the second layer. Plasticity between 
the layers is given by   

(7)

jk∆

zτ
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ητ
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where            and    are constants, and H(x) is a sharp 
sigmoid functions. Detail on the reducing factor     can 
be found in [4].
Differential equations were solved using the Euler method 
with an integration time-step of 0.5 ms.The model pa-
rameters are defined in Table 1.  

3.  QUANTIFYING THE ROBUSTNESS OF 
SEQUENCE ASSOCIATION

In most our simulations, we stored associations be-
tween a sequence in the first layer, say units 1 to 80, and 
a sequence in the second layer, say units 1 to 20, in the 
connection weights of the network as described in [4]. 
We then examined the robustness of sequence association 
by applying perturbed sequences in the first layer (input 
sequences) and observing the evoked sequences in the 
second layer (output sequences). To quantify the differ-
ences between two sequences, we calculated the Spearman 
rank order correlation ρ between the activation times of 
the units in the two sequences. Since the units' activities 
are continuous variables, we had to define when the units 
are considered to have become active. Here we used the 
time of the first local maximum in a unit's activity. The 
correlation takes values between -1 and 1. A correlation 
of 1 or -1, implies that the two sequences are identical or 
reversed, respectively. The closer the correlation is to zero, 
the more the sequences differ from each other. 

Table 1. Mean parameter values used in our simula-
tions. Heterogeneous values were drawn from a normal 

distribution with standard deviation of 4%. The units 
for all time constants are milliseconds.

To study the robustness systematically, we examined 
the relationship between the output correlation and the 
input correlation (Fig. 2). By input and output correlation 
we mean the correlation between the test sequences and 
their respective reference sequences. If for large changes 
of input correlation we obtain low changes in the output 
correlation then the network is robust (gray line), for the 
opposite case we get non-robust network (black line). 
We therefore generated 650 input sequences with input 
correlations roughly uniformly distributed in [-1,1], ap-
plied them on the first layer and recorded the invoked 
sequence in the second layer. Calculating the correlation 
for given sequences is straightforward, but generating 
input sequences with a desired correlation to the reference 
input sequence is nontrivial. Since random sequences 
have predominantly small correlations with any reference 
sequence, we implemented a systematic search algorithm. 
To obtain large positive correlations, we started with the 
reference sequence and successively increased the num-
ber of permutations until a sequence within the desired 
range of correlation was generated. We followed a similar 
procedure for large negative correlations, except that we 
started with the reversed reference sequence. For correla-
tions close to zero, we selected random sequences. We 
then fit a sigmoid function to the relationship between 
output and input correlations

(8)

and quantified the robustness by the parameter c. The 
closer the curve is to the maximal robustness, i.e., a sign 
function, the larger the robustness parameter c. Equation 
(8) is convenient for fitting the data for robust sequence 
association, but is not appropriate for non-robust rela-
tionships. In these cases, we use anotherfitting function 
instead

(9)

We performed model selection based on the Akaike In-
formation Criterion (AIC) to decide in each case whether 
(8), (9), or a combination of both

(10)

best accounted for the input-output relationship.
To examine whether the robustness of sequence as-

sociation is specific to the stored sequences and not found 
for random sequences, we estimated the robustness pa-
rameter c for random reference sequences. We generated 
reference input sequences that had certain correlations 

, ,kτ a ξ Ξ
ψ
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with the input sequence used during storage. The correla-
tions were divided in 10 bins of width 0.2. For each bin, we 
generated 40 randomized input sequences, which served 
as the reference input sequences. For each randomized 
input sequence, we recorded the output sequence gener-
ated by the network in the 

Fig. 2. Graphical presentation for network robustness

second layer. We then performed the robustness analy-
sis described above with this pair of input and output 
reference sequences.

4.  RESULTS

In the first analysis, we reduced the network dynam-
ics to focus on the role of the feedforward connections 
between the two layers. We set the connection strengths 
wE2E2 to zero and switched off plasticity after storing 
the association between a sequence in the first layer and 
a sequence in the second layer. After training the feed-
forward connection strengths, using sequence 1÷80 and 
1÷20 in the first and second layer respectively, we tested 
the sequence retrieval in the network with a corrupted 
input sequence. From the network, we retrieved an output 
sequence, which was very similar to the stored output 
sequence. So, a corrupted input sequence can retrieve the 
correct output sequence in this example. This is reminis-
cent of pattern completion, which is well-known in neural 
network models that store patterns of neural activity. The 
systematic analysis of the input-output function revealed 
that indeed the network robustly associated the input 
with the output sequence (Fig. 3a). This is the central 
result of this paper that we wish to study in more detail 
in the following.

To test whether the observed robustness is simply an 
artifact of our data analysis, we tested the robustness for 
deviant reference sequences. If robustness was a result of 
sequence association, robustness should be observed only 
for the sequences used during storage, and not for random 
ones. When we used a random reference sequence that 
bore no resemblance to the stored sequence, the network 
did not seem to “recognize“ the sequence and retrieved 
an output sequence that was quite different from the 
output sequence used during storage . Using these two 
reference sequences, the input-output relationship was 
not robust (Fig. 3b). When we examined the range of 
possible reference sequences, we found that robustness 
is highest for the stored sequence but drops steeply when 
the reference sequences deviate from the stored ones (Fig. 
3c). The observed robustness is therefore a direct result of 
sequence association in the network connections.

5.  CONCLUSIONS

In this paper the robustness of sequence association 
between two layers in a neural network is quantified 
by testing the input-output relationship of the network 
with distorted input sequences. We found that a purely 
feedforward network associates the input and output 
sequences robustly. There are, however, open questions 
and limitations to our study. For instance, when looking 
at all possible permutation of a reference sequence with 
many elements, the number of sequences with a cor-
relation around zero is much larger than the number of 
correlations close to 1 or -1. By contrast, we took the view 
that we were probing the input-output relationship of the 
network and therefore used input sequences with roughly 
uniformly distributed input correlations. The difference 
in distribution might affect the parameter fits, and it is 
not immediately clear to us which distribution of input 
correlations should be preferred. Perhaps neither of the 
distributions discussed above should be used since they 
are both rather artificial scenarios. Perhaps, the best thing 
to do is to use the distribution of input sequences that is 
generated by the biological network. However, while some 
models have been proposed, none is widely accepted. We 
therefore opted to generate the input sequences according 
to the simple procedure used here to clearly isolate the 
effect of the feedforward connectivity on the robustness 
of sequence association. Future work will be needed to 
investigate the influence of the statistics of the input se-
quences on the robustness.

Another question is the potential influence of the 
procedure for assigning a unique time of activation to 
each unit's activity. 
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Fig. 3. Results: a) robust sequence association; b) robustness for random sequence; 
c) robustness for random sequences in range [-1.1]

Here we used the first local maximum of the activa-
tion. Other potential measures could have been used, 
such as the first time of crossing a certain threshold, 
the median time of the activity distribution, or the time 
of the absolute maximum. Since there is no universally 
agreed upon measure for rate-based units, it is speculative 
at this point. This ambiguity could be resolved by using 
spiking neuron models, where the sharp spikes allow a 
clear definition of times of activity.

We used only one fixed set of network parameters, 
including a relatively modest network size, since the net-
work dynamics and analyses require extensive numerical 
calculations. Future work is needed to study robustness 
of sequence association for different network parameters, 
especially different network sizes and different level of in-
hibition.Additional analysis should be made for noise in-
fluence and influence of plasticity on final performances.
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