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Abstract: 
The aim of this paper is to provide an overview of the current achievements 
in the domain of public-key cryptography within the framework of existing 
knowledge in literature, international standards and best practice as far as 
the RSA algorithm is concerned. This paper is particularly dedicated to the 
attacks on the RSA algorithm, whereas the ways to defend are suggested. 
Methods of attacks on the RSA algorithm are given and further retrospective 
of results obtained during the research are separately treated in the final part 
of the paper through the description of attacks with use of force, low-exponent 
attack, chosen-plaintext attack and timing attack.
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1. ATTACKS ON THE RSA ALGORITHM

Cryptography based on the public key enables the access to the private 
key. With a couple of values ( )ne,  which represent the public key, the at-
tacker can obtain the private key. By analogy, the attack on the RSA can 
be easily carried out if the exponent is known. In general, this type of the 
attack is called the brute forced attack. 

The most effective attack against a RSA algorithm up to now has 
been the factorization of the number n . If the attacker factorizes n , he 
can easily discover ( ) ( )( )11 −−= qpnϕ  as well, and in this way define the 
secret exponent d  from ( )( )nd ϕmod1≡  by using the Euclidean algorithm. 
The safety of the RSA algorithm lays in the factorization, namely at the 
factorization of n  which has over 200 decimal digits with the primitive 
method of dividing by all simple numbers smaller than n , with the help 
of a computer which is able to perform 109 divisions of this kind in one 
second, about 1081 years is needed for the factorization. Presently, the 
fastest algorithms need ( ) ( )( )3/23/1 logloglog nnceO  operations for factorization, 
which means that not one polynomial algorithm is known for factoriza-
tion. It is important to highlight that there are the cases when n  is easier 
to factorize that normally. This is the case when the numbers p and q  
are very close to each other or if 1−p  and 1−q  have small simple fac-
tors. These cases should be avoided while choosing the parameter for the 
RSA’s coding system.
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Also, the attack based on the attempts to calculate 
( ) ( )11 −⋅− qp , is possible, yet the time complexity of this 
attack is not easier than the previously described attack. 
It is possible to search directly for the number d, but it 
has been proven that this procedure is more complex 
that previously described possibilities.

There are several algorithms for factorization:
 ◆ division – represents the oldest and the least ef-

fective method, but it implies tryout of all primi-
tive numbers smaller or equal to 2

1

n  (the expo-
nential complexity),

 ◆ quadratic Sieve algorithm – the fastest algorithm 
for the numbers smaller than 110 figures,

 ◆ Multiple Polynomial Quadratic Sieve – faster ver-
sion of the previous algorithm,

 ◆ GNFS – General Number Field Sieve,
 ◆ SNFS – Specific Number Field Sieve.

The above-mentioned algorithms represent the best 
options for the attack on the RSA algorithm. The Sieve 
algorithms have the so-called super-polynomial complex-
ity (sub-exponential), and the complexity of the Sieve 
algorithms with number fields asymptotically approach 
the polynomial behavior.

Table 1 shows the time in relation to the length of the 
code needed for a computer with 1 MIPS speed from the 
public key to the secret key1. Keys of 1024, 2048 or 4096 
bits are used for the files encryption.

Time needed for calculating the secret key 
from the public one

Length of the key in bits Time needed

50 3.9 hours
100 74 years
150 106 years
200 3,8*109 years

2. THE ATTACK ON THE RSA ALGORITHM 
 BY USING A SMALL EXPONENT

It appears that, if the e is relatively small, it does not 
influence the safety of the RSA algorithm itself. If the ex-
ponent for the coding is small (for example 3, 17, 65537), 
the operation of coding is much faster. The only drawback 
of the usage of the small exponent is visible in the coding 
of short messages if the exponent is chosen. If we assume 
that we have three users with various values of the pub-
lic module 321 ,, nnn  and that they use the same public 

1  For example, the Pentium I computer had about 150 MIPS. 

exponent 3=e . Then, we assume that someone wants 
to send the identical message m . Yet, we have already 
seen if any relatively simple exponent with ( )nϕ  is fine, 
that we can easily choose n=pq so that the number 3 is 
a relatively simple number ( )( ) ( )nqp ϕ=−− 11 . Now, the 
coding of m  message, nm mod3 . Only then the adversary 
can discover the following ciphertext

( ) ( ) ( )3
3

32
3

21
3

1 mod,mod,mod nmcnmcnmc ≡≡≡  
After that, the adversary can find the solution of the 
system of linear configurations by using the Chinese 
theorem on the remainder

( ) ( ) ( )332211 mod,mod,mod ncxncxncx ≡≡≡

In this way, the adversary will get the number x with 
the characteristic ( )321

3 mod nnnmx ≡

However, having in mind that 321
3 nnnm <  is equal 

to 3mx = , so that the adversary can calculate the original 
message m and discover 3 x .

This attack has been described by Coopersmith, 
Franklin, Patarin and Reiter.

If we code an open text m and then m+1. The above-
mentioned authors claim that m could be discovered. 
We have the following coded text:

3
1 mc =

( ) 1331331 2
1

233
2 +++=+++=+= mmcmmmmc   

Now we are trying to solve m . The next step is:
( )
( )

m
mm

mmm
mm
mm

cc
cc

=
++
++

=
+−+
−++

=
+−
−+

333
333

21
121

2
12

2

23

33

33

12

12

This can be generalized. Firstly you can generalize the 
message m  and βα +m  for the known βα , . Secondly, 
it works for the exponents bigger than 3. That the attack 
works in the timeframe ( )2eO  and it is possible for small 
exponents. Finally, it can work for k  messages related 
to the higher degree of polynomials.

Another way – if we choose number 3 for e  and if we 
take 3

1

nM <  (the message shorter than 3 n ), the message 
can be easily decoded by the operation 3

1

M  3 M  as:
33 mod MnM = , if 3/1nM ≤

i.e.: MnM =< 3/1

Coding and verification of signatures with the help 
of the RSA algorithm are faster if the small value is used 
for e, it can be uncertain as well. If you want to code 
( )

2
1+ee  of the linear dependent messages with different 

public keys which have the same values e , that kind of 
the system can be attacked. If a message has a smaller 
number or if they are not related, no problem can arise. 
If the messages are identical, the e  message is sufficient.
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The simplest solution is to expand the messages 
with independent random values. “A random pad” is 
added to the messages prior to the coding. In this way, 
we would never send entirely identical messages. It this 
way ee mnm ≠mod  is also secured. This is done in 
most of the realizations of the RSA algorithm, for ex-
ample PEM and PGP. However, there are attacks based 
on the Coppersmith’s result and LLL algorithm which 
indicate that neither the RSA coding system with small 
exponent e  is safe.

More precisely, the Coppersmith’s result is used 
(1997):

If [ ]xZf ∈  nominal polynomial s degreeδ  , also Nn∈ . 
If 0x  exists so that ( ) ( )nxf mod00 ≡  and εδ −=≤

1

0 nXx , than 

0x  could be found in the timeframe which is polynomial 
in nlog and 

ε
1 .

The next attack in this category is Hastad’s attack (1985). 
If we assume that the data depending on the user is added 
before the coding at the beginning of each message, for 
example 

( ) .,...,1,mod2 kinmic i
eh

i =+⋅=

We have k  of the polynomial ( ) ( ) i
eh

i cxixg −+⋅= 2  
and we look for m  with characteristic 

( ) ( )1mod0 nmgi ≡

If knnnn ...21= . By using the Chinese theorem on the 
remainder we can find it so that

( ) ( )∑
=

=
k

i
ii xgtxg

1

 and ( ) ( )nmg mod0≡

( ) ( )( )jiii ntnt mod0,mod1 ≡≡  for ij ≠
The polynomial g is normalized and the degree e . If 
ek > ; i.e. if we have several users (intercepted ciphertext) 

than the public exponent, than ek
ii nnnm

11

min <<< , so m  
can be effectively found by using the mentioned Cop-
persmith’s result. 

The next attack of the type “low exponent of decoding” 
on the RSA algorithm was discovered by Michael Wiener 
(1990). This type of the attack d is reconstructed, where 
d  could reach maximum of one fourth of n , while e  
is less than n.

ed - kφ(n) = 1

( )
n
e

d
knn ≈⇒≈ϕ

If pqp 2<< . If 25,0

3
1 nd < , than

22
1
dn

e
d
k

<−

According to the classical Legendre’s theorem from 
Diophantine approximations, d  must be the directory of 
a convergent pm/qm in the development of the continued 

fraction of the number e/n, so that d  can be effectively 
calculated from the public code ( )en, . The number of 
convergent in total is ( )nO log , while each convergent 
can be tested in polynomial time.

Here we have to mention Verheul – van Tilborg attack 
as well (1997) which represents the expansion of Wiener’s 
attack which is applicable when d  has several more bitss 
than n0,25. For d>n0,25, their attack uses the search by brute 
force for beatst 82 +  with certain assumptions to partial 
quotient in a continued fraction, where t=log2(d/ n0,25).

Also, the Boneh – Durfee (1990) and Blomer – May 
(2001) attacks belong to this type of an attack. They are 
based on the Coppersmith’s technique which uses LLL-
algorithm for calculating the small roots of modular 
polynomial equations. These attacks are »heuristic«, and 
in the practice they are satisfactory if 292,0nd < .

It is believed that the secret exponent nd > should 
be used, as it is known that all the above-mentioned at-
tacks are completely useless in that case.

A small modification of the Verheul – van Tilborg 
attack was made in 2004 based on Vorli’s result (1981) 
from Diophantine approximations, which means that 
all rational numbers p/q which satisfy the inequalities

2q
c

q
p
<−α ,

For a positive realistic number c , are in the form

1
1

m m

m m

rp spp
q rq sq

+ ±
=

+ ±

For a 1−≥m and non-negative whole numbers r and 
s in the way that rs<2c.

Ibrahimpašić (2008) claims that Vorli’s result is the 
best possible, in the sense that the condition rs<2c cannot 
be replaced by rs<(2-ε)c for 0>ε .

In the both mentioned expansion of the Winner’s at-
tack, candidates for the secret exponent take the form of

d = rqm+1 + sqm+1. 

All the possibilities for d  are tested, while the num-
ber of all possibilities is roughly speaking (the number 
of possibilities for r) x (the number of possibilities for s), 
which is ( )2DO , where D = d/n0,25.

More precisely, the number of possible couples ( )sr,  
in Verheul – van Tilborg attack is ( )22 ADO , with 

{ }3,2,1:max +++== mmmiaA i

While in Andrej Duella’s variant from 2004 is 
( )ADO log2 .
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The new modification of the Verheul – van Tilborg 
attack was proposed by Sun, Wu and Chen (2007). This 
modification requests heuretical search by brute force for 
2t - 10 bits, so its complexity is also ( )2DO .

Drastic improvements cannot as Steinfeld, Contini, 
Wang and Pieprzyk (2005) proved that among the algo-
rithms of this type there is not an algorithm with sub-
exponential dependence on D .

 3. THE ATTACKS ON THE RSA ALGORITHM 
BY USING THE CHOSEN CHIPERTEXT

The attack on the RSA algorithm by using the chosen 
chipertext attack is based on the presumption that the 
attacker in some way manages to find the chipertext of 
his choice. 

The attacker taps the communication channel over 
which the RSA coded messages are exchanged, discov-
ers the message C , in a way that he wants to discover its 
original content, i.e. mathematically he was to discover:

nCM d mod=

With the assumption that the attacker knows the 
public key ( )ne, , in order to obtain M  the attacker firstly 
chooses a random message R , where nR < , than he codes 
the message with the public key:

nRX e mod=

Chipertext message C is multiplied by using the X : 
nCXY mod⋅=

Also, the attacker calculates the modular inverse val-
ues from R : nRT mod1−=

While the attacker assumes that:

nRX e mod= , and nXR d mod=

The attacker must wait for the user to digitally sign Y  
with his private key, which is how he effectively decodes 
Y , and sends nYU d mod=  to the attacker. The attacker 
must calculate the following:

( ) ( ) =⋅=⋅ − nnYnRnUT d modmodmodmod 1

( ) ( )[ ] =⋅⋅− nnnCXnR d modmodmodmod1

( ) ( )[ ]=⋅⋅− nCXnR d modmod1

( ) ( ) ( )[ ] =⋅⋅− nnnCnXnR dd modmodmodmodmod1

( ) [ ] =⋅⋅− nnMRnR modmodmod1

MnMRR =⋅⋅− mod1

4. TIME BASED ATTACK ON THE RSA 
ALGORITHM

Amelioration of the cryptography based on the public 
key has revealed some facts and regularities. For example 
the modular and exponential operations used for the 
RSA algorithm request discrete time intervals. If the RSA 
operations are carried out by using the Chinese Remain-
der Theorem, the attacker can use small time differences 
while conducting the RSA operations, and that way in 
many cases discover d. This type of the attack is based 
on passive tapping of the RSA operations. 

The attacker passively observes k  operation and meas-
ures the time T  needed for calculating nCM d mod= .

The assumption is that the attacker recognizes C and  n. 
This method will enable someone who knows the exponents 

110 ,...,, −sddd to discover the bit sd ; obtain the exponent d , 
starting from 0d , repeating the attack until he discovers the 
entire exponent βdddddd ss ,...,,,...,, 110 −=  

. Now, we start 
from 0d  the least important bit in comparison to d. Having 
in mind that d  is an odd number, we know that 10 =d . 
In this phase we have: ,10 =d  CM ≡ , ( )nCC mod2≡ .

Than we consider 1d . If 11 =d than the victim will have 
to do ( )nCMM mod⋅← , ( )nCC mod2←  if 01 =d , than 

( )nCC mod2← .

If it  is needed for the hardware calculation 
( )nMMCM iiii mod2⋅≡⋅ . Of course, it  is different one 

from the other, as the time for calculation ( )nMM ii mod2⋅  
depends on the value of iM .

This attack requests monitoring of the cryptographical 
operations in the real time, which to a larger extent limits 
the possibility to carry out the attack itself.

5. ATTACKS ON THE RSA ALGORITHM
 OF THE TYPE OF “JOINT MODULUS”

One of the possible realizations of the RSA algorithm 
gives the same value n, but different values for exponent 
e  and d . Sadly, this does not function. The most visible 
problem is: if the same message is ever coded with two 
different exponents (both have the same modulus) and 
the two exponents are coprime (as in the general case), 
then the open text can be reconstructed without a single 
decoding exponent.

If m message is in the form of an open text, the keys for 
the decoding are 1e  and 2e . Joint modulus is n . Two de-
coded messages are : nmc e mod1

1 =  and nmc e mod2
2 = .
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A cryptanalyst knows 2121 ,,,, cceen . The description 
of the way it is being reconstructed m follows.

As 1e  and 2e  are coprime, by expanded Euclidean 
algorithm can be found r  and s , so that: re1+re2=1.

Assuming that r is negative (or r or s must be nega-
tive value, why we consider the r is negative), then the 
expanded Euclidean algorithm can be again applied in 
order to calculate 1

1
−c . Than ( ) mcc =

−− 5
2

1
1

γ .
There are two other treacherous attacks on this type of 

the system. One uses probability method for factorizing n. 
The other uses algorithm for calculating someone’s secret 
key for factorizing the module. Both attacks are described 
in detail in [95].

Do not allow a group of users to share a single n .

6. THE ATTACK ON CODING AND SIGNING 
BY THE RSA ALGORITHM

It makes sense that a message is signed before cod-
ing, but not everyone sticks to this rule. When the RSA 
algorithm is used, the attack can be carried out on the 
protocols doing the coding before the signing.

Alice wants to send a message to Bob. She firstly codes 
the message with Bob’s public key, then signs with her 
private key. Her key and the signed message look like this:

( ) A
d

b
e nnm AB modmod

The description of how Bob can claim that Alice sent 
him `m , and not m . Bear in mind the following: as Bob 
knows the factors Bn  (his modulus), he can calculate 
discrete algorithms in relation to Bn . That’s why, he is 
supposed to discover x  so that: bnmm mod=′ .

Then, if he can give xeB as his new public exponent 
and keeps Bn  as his modulus, sent him the message `m  
coded with this new exponent.

7. CONCLUSION

It could be concluded that the RSA algorithm for 
four decades after having appeared still represents the 
safe solution, whose usage with up to know techniques 
of attacks is still safe. This claim is rooted in the fact that 
even though the detailed studying of the RSA algorithm is 
ongoing, a method has not yet been discovered that would 
completely destroy the RSA. Everything comes down to 
discover individual weaknesses, which gives a warning 
how to choose parameters for the implementation of the 
RSA. All this enables that the RSA, for the time being, is 
assessed as a safe cryptosystem.
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