
SINTEZA 2016

INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

118

Slobodan V. Petrović

Norwegian University of Science and
Technology (NTNU),
Gjøvik, Norway

Correspondence:
Slobodan V. Petrović

e-mail:

slobodan.petrovic@ntnu.no.

A CONSTRAINED APPROXIMATE SEARCH
SCENARIO FOR INTRUSION DETECTION
IN HOSTS AND NETWORKS

CRYPTOGRAPHY AND SECURITY

Abstract:
It is well known that most new attacks against computer systems and networks
originate from the old ones. Namely, it is possible to change the old attack pat-
terns in such a way that the modified patterns affect approximately the same
targets on the victim system and pass undetected by signature-based Intrusion
Detection Systems (IDS) or other detection tools. In this paper, we consider
a scenario where an old attack pattern is changed by means of an automatic
tool. The structure of changes must be kept under control in order for the
attack to remain effective. For example, the number of changed symbols in
an automatically crafted string in the attack pattern must be limited. Other-
wise, this string would not affect the victim system in the same way as in the
original attack. Under such an assumption, we describe the requirements for
a search algorithm implemented in the detection tool (for example, an IDS)
that would be capable of detecting the changes in the old attack signature. We
present the basic structure of a generic search algorithm of this kind, describe
some application scenarios and discuss the effectiveness of the algorithm
under these scenarios.
Key words:
intrusion detection, misuse detection, non-deterministic finite automaton,
simulation, approximate search.

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2016-118-123

1.	 INTRODUCTION

Intrusion detection in hosts and networks is automatic detection of
security policy violations. Monitoring systems that perform this kind of
activity are called Intrusion Detection Systems (IDS). Most IDS compare
the incoming traffic (or security logs) with the records of attack signatures
contained in a signature database. This process is called Misuse Detection.
The attack signatures define what is abnormal for the defended computer
system/network and every match is reported in the form of an alarm. The
comparison is exact, which is a source of vulnerability since an attacker
can easily modify the attack traffic in such a way that the signature present
in the IDS does not match and the traffic launched towards the victim is
still harmful. On the other hand, too many changes to the original attack
traffic template performed by an attacker can make the resulting traffic
behave unpredictably. Because of that, the number and distribution of
possible changes to the old attack traffic pattern are limited. In addition,
the attackers often use automatic tools to perform these changes since
the amount of traffic to process is huge. These tools must be configured
before the traffic is processed and configuration determines the number
and distribution of changes, among other parameters.

SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

Cryptography and security

119

In order to cope with the vulnerability of IDS that
is a consequence of using exact search, it is possible to
replace the exact search algorithm with an approximate
search algorithm. In such a way, up to a tolerance level
determined in advance, the IDS would be capable of de-
tecting several variants of the same attack by keeping just
one attack signature in its database (see for example [1]).

There are two challenges related to the use of ap-
proximate search in intrusion detection. The first one
is related to the efficiency of operation. Namely, the ap-
proximate search algorithms are slower than their exact
search counterparts and we have to make sure that an
IDS implementing an approximate search algorithm is
efficient enough to process the incoming traffic and/or
log files in real time. The second challenge is a possibil-
ity of generating additional false positives and/or false
negatives due to the fact that an approximate search al-
gorithm without any limitation regarding the number
and distribution of changes performed on the original
attack traffic pattern would report a match even on the
traffic patterns that could not be generated by small
modifications of the original attack.

In this paper, we define the criteria for approximate
search algorithms that they must satisfy in order to be
applied in intrusion detection. We propose a generic al-
gorithm that would satisfy these criteria and describe
some scenarios of its application. The effectiveness of the
algorithm regarding the speed and false positive/nega-
tive rate is also discussed.

The structure of the paper is the following. In Sec-
tion II, we define the basic criteria that any approximate
search algorithm has to satisfy in order to be applied in
intrusion detection and present a generic approximate
search algorithm for intrusion detection. In Section III,
we describe the application scenarios for this algorithm
and discuss its effectiveness. The conclusion is given in
Section IV.

2.	 THE GENERIC SEARCH ALGORITHM

Search algorithm quality criteria

Basically, the challenges related to the use of approx-
imate search algorithms in intrusion detection that we
enumerated above determine the criteria of their qual-
ity. Regarding the speed, real time operation of an IDS
is essential since the attack traffic has to be alerted upon
before any harm is done. This is a challenge even for
exact search algorithms because of the speed of today’s
network traffic. Thus, the computational overhead intro-

duced by approximate search in an intrusion detection
system must not significantly reduce its speed.

Regarding the false positive/negative rate, we have
to reduce the probability of appearance of false positives
and false negatives that are produced as a consequence
of using approximate search since the false positives and
false negatives are also produced in an IDS for other rea-
sons and otherwise represent a great problem, reducing
the trust of the users to the alarms generated by these
systems.

To satisfy the quality criterion related to operation
speed defined above, it is required that we use search
algorithms that include parallel processing. The fastest
known algorithms of this kind exploit so-called bit-
parallelism phenomenon, i.e. the fact that it is possible
to use computer words to simulate Non-deterministic
Finite Automata (NFA) assigned to search patterns.

To satisfy the quality criterion related to the number
of false positives/negatives, it is necessary to introduce
some constraints in the approximate search. These con-
straints reflect the properties of the algorithm that the
attacker uses in order to produce the new attack traffic
patterns starting from the old ones. For this to be ef-
fective, we must know the probabilities of change/edit
operations that the attacker uses in this process. The key
fact here is that the changes on the old traffic patterns
must be small. Thus, by studying the existing attack sig-
natures, it is possible to predict what kind of changes
are feasible on to the corresponding traffic and to define
adequate constraints in search.

Satisfying the quality criterion related to the num-
bers of false positives/negatives is not independent of
the operation speed criterion. The reason for this is the
computational overhead that is introduced to the ap-
proximate search algorithm without constraints once
the constraints are introduced in it. Because of that, we
have to design the constrained approximate search al-
gorithms for application in intrusion detection in such a
way that we do not violate the satisfaction of the opera-
tion speed criterion. We have to achieve a trade-off be-
tween efficiency and (low) probability of false positives
and/or negatives.

Bit-parallelism and search

We explain the bit-parallelism phenomenon by
studying several examples. Consider the search pattern
w=“quick” of length m=5 and the search string S=”The
quick brown fox” of length n=19. A naïve search algorithm

SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

Cryptography and security

120

would place the search pattern along the search string
starting from the first position in the search string and
compare the corresponding characters. An exact match
would be reported if every character of the search pat-
tern would be equal to its counterpart in the search
string. Then the search pattern would be moved one
position to the right and the whole procedure would
be repeated. We would continue this process until the
position n-m+1 in the search string. If we have as many
computers running in parallel as we wish, then we can
run n-m+1 character-by-character comparisons con-
currently and finish the search in a single step. We can
imagine that each time a new symbol from the search
string appears, a new finite state machine performing
the character-by-character comparison assigned to the
search pattern is created and all the machines created
before that point together with the newly created one
perform the comparison of the current symbol from the
search string with the current character of the search
pattern. If any of the machines cannot match the current
character from the search string it becomes inactive (i.e.
it will not process more characters in the future), other-
wise it remains active.

The problem with this kind of parallelism is that it is
not binary (it involves character-by-character compari-
sons) and as such it can only be simulated on a digital
(i.e. binary) computer. Consequently, simulation of par-
allel processing this way does not improve efficiency of
the (exact) search algorithm.

Baeza-Yates and Gonnet [2] showed that it is suf-
ficient to consider only the status (active or inactive)
of the machines that were created while processing the
characters of the search string S. This converts our paral-
lel processing search algorithm into a binary one. Then
we can use the binary operators (shift, OR, AND) on all
the bits of the computer word of length m at the same
time, which speeds up the search process by the factor
m provided the search pattern is shorter than the length
of the computer word (usually 32 or 64 bits).

Fig. 1 – Bit-parallelism (see text)

Consider the following example. Let the search
pattern be w=”gauge”, m=5 and the search string be
S=”omegagauge”, n=10”. We assign a finite state machine
performing character-by-character comparison to the pat-
tern w. We keep track of the status of each machine created
during the search process in a computer word D of length
m. We call this computer word the search status word. A
zero in the status word means an inactive machine and a
one means an active machine. Whenever a new machine
is created (before we process the next symbol from S)
its status is active. After processing j symbols from the
search string S, some machines are active and some are
inactive. We can only have m machines at a time, so before
processing a new symbol from S we have to eliminate the
oldest machine. We do this by shifting the status word
one position to the left. The fact that the newly created
machine that will start processing from the j-th symbol
of S is active before processing that symbol is equivalent
to OR-ing the status word with 1. We now notice that if a
machine is active waiting for a certain character only that
character will keep it active and this fact does not depend
on the search string. Thus, we can define bit masks B[s]
assigned to each character s of the search pattern w prior
to processing the search string S. The bit mask B[s] has the
value 1 at the positions where the search pattern has the
character s, read from right to left. In our case, B[g]=01001,
B[a]=00010, B[u]=00100, B[e]=10000. For the characters
outside of the search pattern w the bit mask is zero. After
shifting the status word D by one position to the left and
OR-ing it with 1, we AND it with the bit mask of the current
character. We call this process updating the status word.
The updating formula is then [2]

Dj = ((Dj-1 << 1) OR 1) AND B[Sj], 	 (1)

where Sj is the j-th character of the search string S.
Thus, the search process is reduced to updating the

status word D for each input symbol from the search
string S and checking whether the most significant bit
(MSB) of D is equal to 1. In that case, we have an occur-
rence of the search pattern w in the search string S. Note
that the original “Shift-AND” search algorithm from [2]
based on bit-parallelism status word updating formula
(1) is an exact search algorithm.

Unconstrained approximate search

Suppose we allow up to k errors in the search process
and the errors can be results of insertions, deletions or
substitutions of characters. A common way to design
a tolerant search algorithm of this kind based on bit-

SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

Cryptography and security

121

parallelism is to use the so-called Row-wise Bit Parallel-
ism (RBP) [3]. In such an algorithm, instead of having a
single search status word D, we use a search status array
R containing k+1 search status words of length m (the
length of the search pattern w). The 0-th row (R0) of the
array corresponds to exact search, the 1-st row (R1) cor-
responds to the search with 1 error, etc. The search status
array updating formula is more complicated than in the
exact search case. To understand it, we have to imagine
a Non-deterministic Finite Automaton (NFA) array that
is simulated by the RBP. It is an array of machines per-
forming matching of a single character connected with
transition arrows. A horizontal arrow means a match
of the current input character from the search string S.
A vertical arrow means an insertion of that character,
a solid diagonal arrow means a substitution of the cur-
rent input symbol and a dashed diagonal arrow means
a deletion of the current input symbol.

The status word updating formula for the 0-th row
of the array is the same as (1), i.e. the “Shift-AND” for-
mula. For the rest of the rows, each row status word
depends on the previous one. So, the final status word
array updating formula for the unconstrained approxi-
mate search using RBP is [3,4]

R0’ = ((R0 << 1) OR 1) AND B[Sj],
Ri’ = ((Ri << 1) AND B[Sj]) OR Ri-1 OR (Ri-1 << 1) OR

		 (Ri-1’ << 1), 		 (2)

where R’ represents the new status of the array, after
the updating. Note that the status updating formula for
the rows other than 0 consists of 4 parts correspond-
ing to match, insertion, substitution and deletion, re-
spectively. The contributions of all the operations are
superimposed, which is represented by OR-ing in the
formula.

Constrained approximate search

To cope with false positives and false negatives that
are produced as a consequence of using approximate
search, we have to introduce certain constraints in the
search process, as discussed above. The constraints are
taken into account in the Row-based Bit Parallelism al-
gorithm by assigning special counters or counter arrays
to each bit of the status array. The role of the counters is
to keep track of allowed edit operations from a state of
the NFA array. These operations depend on the nature
of the constraints. For example, if the constraints are
on the total numbers of edit operations allowed in the
search process, then each counter contains the remain-

ing number of edit operations allowed from the corre-
sponding state. The search status updating formula in
the constrained case encompasses not only updating the
values of the bits of the status array, but also updating
the values of the constraint-related counters.

Generic constrained approximate search algorithm

After explaining bit-parallelism and the uncon-
strained and constrained bit-parallel approximate
search, we are now ready to present a generic con-
strained approximate search algorithm. It contains
counters that have to be updated after updating the sta-
tus bits of the NFA array. To update these status bits,
we first have to determine whether certain transitions
are allowed from each state. This is done by introducing
additional bit masks and AND-ing them with the status
words corresponding to each row of the array. Such bit
mask is always equal to 1m for the 0-th row of the sta-
tus array. For other rows, the bit mask values depend
on the values contained in the counters. If the values of
the counters reach their allowed maxima (or minima,
depending on the constraints), then the corresponding
bit value in the bit mask will be 0. A zero bit in such a
mask means that the corresponding transition will not
be allowed at updating the status array.

The generic constrained approximate search algo-
rithm is presented below. The concrete operations nec-
essary to update the counters and produce bit masks
depend on the constraints.
Algorithm 1 – Generic constrained approximate search

Input:
The search pattern w=w1w2…wm

The search string S=s1s2…sn

The number of allowed errors k; sometimes, k is
determined by the values of the constraints
The constraints, usually in the form of an array of
numbers C; the meaning of the numbers depends
on the nature of the constraints.

Output:
A set of positions where w was found in S (can be
empty).
1.	 Initialization – i least significant bits are set to 1

in the row i of the status array R, i=0,…,k
2.	 For j=1,…,n

2.1. Update the row 0 of the status array
2.2. For the rest of the rows of R:

2.2.1. Check the values of the counters for each
bit of the row

SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

Cryptography and security

122

2.2.2. Generate the bit mask depending on the
values of the counters

2.2.3. Update the status word for the row (equa-
tion‚ (2)) and AND it with the bit mask

2.2.4 Update the counter values for the row
2.3. Check the MSB of each row of the status array

– if it is equal to 1 then we have an occurrence
of w in S.

The model of the attacker behavior and the tool that
the attacker uses to transform the known attack pattern
to a new attack determine what constraints will be ap-
plied in the search algorithm. These constraints convert
the generic approximate search algorithm into a concrete
one.

3. 	APPLICATION SCENARIOS
	 AND EFFECTIVENESS

We consider two scenarios for application of the
generic constrained approximate search algorithm pre-
sented in the previous section. In the first scenario, the
total number of edit operations (insertions, deletions and
substitutions) represents the constraints. In the second
scenario, the maximum lengths of runs of deletions and
insertions represent the constraints.

If the total number of edit operations represents the
constraint, then we associate the counter array C=[i,e,s]
to each bit of the status array, where i denotes the number
of insertions, e denotes the number of deletions (eras-
ures) and s denotes the number of substitutions that are
allowed for any transition originating from that status
bit. If any of the numbers i, e, or s is equal to 0, the cor-
responding transition is not allowed. The initial values
for the triples [i,e,s] are equal to [I,E,S] i.e. the constraints
given in advance. Obviously, I+E+S=k in this case. Each
time a transition takes place, the corresponding number
of allowed edit operations is reduced by 1. If an insertion
takes place, i is reduced by 1 and copied to the corre-
sponding constraint value of the destination status bit.
If a deletion takes place, e is reduced by 1 and copied
to the corresponding constraint value of the destination
status bit. If a substitution takes place, s is reduced by 1
and copied to the corresponding constraint value of the
destination status bit.

If the maximum lengths of runs of insertions and
deletions represent the constraints, then we have to be
aware of the fact that, in addition to the counter values of
consecutive deletions and/or insertions, we have to keep
track of other operations that, if they take place, reset
these counters. For example, a deletion, a substitution or

a match resets the counter associated to insertions and an
insertion or a substitution or a match resets the counter
associated to deletions. The bit masks in this case become
more complicated and must be associated to insertions
and deletions at updating the rows of the status array
other than 0.

By effectiveness of a search method in this paper
we assume time and space complexities combined with
probabilities of false positives and false negatives ob-
tained with the IDS implementing the method. It is ob-
vious that space complexity in both application scenarios
is increased since counters (i.e. additional memory) are
involved. However, as explained earlier, we are consider-
ing only small changes of the original attack patterns and
because of that, the increase in space complexity cannot
be such that it could threaten memory capacity on a sen-
sor implementing the IDS. The same holds for time com-
plexity. Increased time complexity is a result of updating
the counters, in any application scenario. However, once
the counters have been updated, operating the additional
bit masks is as fast as other operations already present in
the unconstrained approximate search algorithm. In ad-
dition, since the assumed changes of the original attack
traffic pattern are small, very often just up to 1 operation,
the use of the counters does not contribute too much to
the overall complexity of the search algorithm.

Regarding the false positive and false negative rates,
assuming small changes to the original attack traffic pat-
tern and modeling such changes by the constraints intro-
duced in the approximate search algorithm automatically
prevents alarming on the traffic that does not correspond
to the model. This traffic would be alerted upon without
the introduced constraints.

4.	 CONCLUSION

In this paper, we gave an overview of possibilities to
handle the situations in misuse-based intrusion detec-
tion, in which an attacker deliberately changes the attack
patterns known to the defended host/network (i.e. the
one, whose signature is present in the misuse database)
in order to pass unnoticed by the victim. To this end, the
attackers usually use tools since the amount of traffic to
process is huge. Such tools must be configured regard-
ing the number of changes to introduce and this number
must be small since otherwise the transformed attack traf-
fic might behave unexpectedly. This fact can be exploited
on the defended side. First, to detect the transformed traf-
fic pattern, the misuse-based Intrusion Detection System
(IDS) can use approximate search instead of exact search

SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

Cryptography and security

123

(which is otherwise almost always used). Second, to re-
duce the number of false positives and false negatives,
certain constraints can be introduced in the approxi-
mate search algorithm, which model the behavior of
the attacker/the tool that he/she uses. A generic con-
strained approximate search algorithm is presented in
the paper, which takes into account general constraints
(of virtually any kind). Then, two application scenarios
are described that model the behavior of the tool used
to transform the old attack traffic pattern. Each scenario
has its particular definition of constraints, which can be
substituted in the generic search algorithm in the cor-
responding application. The computational overhead
introduced by introducing the constraints must be kept
under control in order for the IDS to continue operating
in real time. This is ensured by the fact that the changes
to the original attack traffic pattern that the attacker can
introduce must be small. On the other hand, using con-
straints guarantees reduction of the false positive and
false negative rates since the traffic that does not cor-
respond to the model of the attacker’s/tool behavior is
automatically discarded.

REFERENCES

[1]	 J. Kuri and G. Navarro, “Fast multipattern search al-
gorithms for intrusion detection,” in String Process-
ing and Information Retrieval, 2000. SPIRE 2000.
Proceedings. Seventh International Symposium on,
2000, pp. 169-180.

[2]	 R. Baeza-Yates and G. H. Gonnet, “A new approach
to text searching,” Commun. ACM, vol. 35, no. 10,
Oct. 1992, pp. 74-82.

[3]	 S. Wu and U. Manber, “Fast text searching allowing
errors,” Commun. ACM, vol. 35, no. 10, Oct. 1992,
pp. 83-91.

[4] 	 G. Navarro and M. Raffinot, Flexible Pattern Match-
ing in Strings: Practical On-line Search Algorithms
for Texts and Biological Sequences. New York, NY,
USA: Cambridge University Press, 2002.

