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Abstract: 
Information fusion in intelligent systems is one of the basic problems. This 
issue is rapidly increasing since more complex systems are being developed, 
e.g., robotics, vision, knowledge-based systems and data mining. The process 
of combining several values into a single representative one is called aggrega-
tion, and we present two applications of aggregation functions in multisensor 
data fusion and network aggregation in sensor networks. Special attention is 
devoted to the situation of pairs of aggregation functions under the semiring 
structure (pseudo-analysis). The author shall present two applications of it 
in image processing.
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1. INTRODUCTION

Information fusion is a fundamental problem in intelligent systems and 
its importance is rapidly increasing since many complex systems are being 
developed. There are many areas where there is a need to develop theoreti-
cal background for information fusion, e.g., fields such as robotics (fusion 
of data provided by sensors), vision (fusion of images), knowledge based 
systems (decision making in a multicriteria framework, integration of dif-
ferent kinds of knowledge, and verification of knowledge-based systems 
correctness) and data mining (ensemble methods) are well known. The 
aims of information fusion include the following: to improve the available 
knowledge, to update the current information, to lay bare a consensual 
opinion, to derive or improve generic knowledge by means of data.

The process of combining several (numerical) values into a single 
representative one is called aggregation, and the function performing this 
process is called aggregation function [8]. In this paper, we consider ag-
gregation functions as mappings that assign a single output in the closed 
unit interval [0; 1] to several inputs from the same interval.

In order to deal with the problems involving interaction between 
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criteria various classes of nonadditive set functions have 
been introduced. Based on them Choquet and Sugeno 
(see [14]), idempotent [9], universal, pseudo-integral [14] 
and other integrals [14], [15], [23] were introduced. The 
pseudo-integral is part of the pseudo-analysis, where a 
real interval [a, b]⊂[-∞,∞] equipped insted of the usual 
addition and product, with two operations: the pseudo-
addition ⊕ and the pseudo-multiplication ⊙. Based on 
⊕-measure (pseudo-additive measure), pseudo-integral is 
defined. Then properties of the pseudo-integral including 
inequalities for this type integral have been investigated, 
see [14], [19]. The pseudo-analysis is used in many ap-
plications, modeling uncertainty, nonlinearity and op-
timization, see [9], [12], [13], [16], [17].

This paper is organized as follows. Section II presents 
some basic facts on aggregation functions. Applications 
of aggregation functions in multisensor data fusion and 
sensor networks are presented in Section III. Some ele-
ments of pseudo-analysis are presented in Section IV. Two 
applications of pseudo-analysis are given in Section V.

2. AGGREGATION FUNCTIONS

One of the mainly used aggregation function is the 
arithmetical mean AM: [0,1]n →[0,1]. of n numbers x1, 
x2,..., xn ∈ [0,1], given by

Important property of the arithmetical mean is mo-
notonicity, i.e., if in the arithmetical mean (x+y+z)/3 we 
take instead of the number z a greater number z’, then 
obviously that the new arithmetical mean (x+y+z)/3 
will be greater than the previous one. This would be 
true if we did the same on any coordinate, and also true 
for general case of n-dimension. The second important 
property of the arithmetical mean we obtain if we take 
the border numbers 0 and 1; i.e., the arithmetical mean 
of n zeros is again zero and the arithmetical mean of n 
ones is again one.

The inputs that aggregation functions combine are in-
terpreted as degrees of membership in fuzzy sets, degrees 
of preference, strength of evidence, etc. For example, a 
rule-based system contains rules of the following form:

IF ‘t1 is A1’ AND . . . AND ‘tn is An’ THEN ‘v is B’.

If x1,..., xn denote the degrees of satisfaction of the rule 
predicates ‘t1 is A1’,..., ‘tn is An’ then the overall degree of 
satisfaction of the combined predicate of the rule anteced-

ent can be calculated as A(x1,..., xn). If all input values are 
0, it implies lack of satisfaction, and if all inputs are 1 then 
this is interpreted as full satisfaction. As a consequence, 
aggregation functions should preserve the bounds 0 and 1.

The general definition of aggregation functions, see 
[8] is the following.

Definition 1: 

A function A : [0,1]n →[0,1] is called an aggregation 
function in [0,1]n if

(i) A is nondecreasing: for x1 ≤ x1
′, ... , xn ≤ xn

′ we have 

A(x1, x2 ,..., xn) ≤ A(x1
′, x2

′,..., xn
′); 

(ii) A fulfills the boundary conditions 

A(0, 0,... ,0) = 0  and  A(1,1,..., 1) = 1.

We list only few aggregation functions in [0,1]n, for 
pleanty of them see [8]:

We frequently use the arithmetical mean, but the 
question is when it is meaningfull to use it. In some 
practical situations, the appropriate mean is uniquely 
determined by the situation itself.

Example 2: 

(i) Connecting n resistors with resistances x1,..., xn 
in series, then the average resistance is the arith-
metic mean of x1,..., xn. On the other hand, if the 
resistors are connected in parallel then the effect 
is the same as if one had used n resistors with the 
same resistance, all equal to the harmonic mean 
of x1,..., xn.

(ii) In information retrieval, where precision and re-
call are two widely used metrics for evaluating the 
correctness of a pattern recognition algorithm. 
The harmonic mean of the precision and the 
recall is often used as an aggregated performance 
score. 

(iii) In hydrology, the arithmetic mean is used to 
average hydraulic conductivity values for flow 
that is parallel to layers, while flow perpendicular 
to layers uses the harmonic mean.
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Clasification of aggregation functions, see [8]:
(i) Conjunctive 0 ≤ A ≤ Min; 
(ii) Internal (means) Min ≤ A ≤ Max; 
(iii) Disjunctive Max ≤ A ≤ 1; 
(iv) Mixed. 

3. APPLICATION OF AGGREGATION 
FUNCTIONS 

A. Multisensor data fusion 

Multisensor data fusion refers to the synergistic com-
bination of sensory data from multiple sensors and related 
information to provide more reliable and accurate infor-
mation than could be achieved using a single, independent 
sensor. The important advantages of multisensor fusion 
are redundancy, complementarity, timeliness and cost of 
the information. The fusion of redundant information can 
reduce the overall uncertainty and thus serve to increase 
the accuracy with which the features are perceived by the 
system. Complementary information from multiple sen-
sors allows features in the environment to be perceived 
that are impossible to perceive using just the information 
from each individual sensor operating separately [11]. 
Multisensor data fusion strategies are developed for ad-
vanced driver assistance systems (ADAS), see [22], where 
there are given data fusion concepts, an applicable model, 
paradigm of multisensor fusion algorithms, current sensor 
technologies and some applications such as object track-
ing, identification and classification and a providence 
view on next-generation car safety and driver assistance 
systems. The fuzzy logic approach is used in the model as 
sensor fusion. To follow a vehicle by an adaptive cruise 
control (ACC) system one must keep safe distance by 
measuring the front vehicle distance to the host vehicle. 
The host vehicle is equipped with four types and five sen-
sors among total 16 sensors that should be considered, 
each of which with different coverage area and may be 
infected by some environments noise, consequently with 
deferent measurements regarding the position of front 
vehicle. All sensor data are fuzzified in order to deter-
mine a near real distance. After several modifications and 
improvements of membership functions with Min-Max 
aggregation operator of FuzzyTECH Simulator, a satisfac-
tory following by the host vehicle is extracted.

Sensor fusion is also used for classification of objects 
and for pattern recognition. Let X be a set of objects under 
consideration (such as airplanes, cars, animals, flowers, 
etc.), and {C1,..., Cp} are predefined classes. Assume that 

each object in X is measured by a set of sensors S1,..., Sn. 
Each sensor provides a partial description of objects. For 
example, a plane can be detected by several radars and 
observed by other equipment. In a military situation, 
only two classes of planes count: friend or foe, see [8]. 
We remark that the aggregation function may depend 
on the particular class considered. Some sensors may 
be more discriminative for certain classes, but unable 
to distinguish some others. This means that the weight 
assigned to sensors may depend on the classes. In such 
a situation, internal weighted aggregation functions can 
be a good choice.

B. In-network aggregation in sensor networks

A sensor network consists of a large number of indi-
vidual devices called sensor motes. Each device produces a 
data stream through sensing modalities. Because in many 
cases there is no need to report the total data stream, and 
because individual observations may be noisy or miss-
ing, it is necessary to aggregate information collected 
by sensors. A spanning tree is used, where each sensor 
combines its own observations with those received from 
its children. This is an effective procedure for aggrega-
tion functions such as Min, Max, AM when there is no 
failure. In general, one can use so-called decomposable 
aggregation functions, where the value of the aggrega-
tion function can be computed for disjoint subsets of 
variables, and then in the second step, these value can 
be aggregated to obtain the aggregate of the whole set 
of variables. Node or link failures, or packet losses may 
cause significant change in the aggregated value. For 
instance, some aggregation functions such as AM are 
duplicate-sensitive: incorrect aggregated value is resulted 
when the same value is counted multiple times. In [6] 
an approximate method is proposed to overcome these 
difficulties of duplicate-sensitive aggregation functions 
in faulty sensor networks. In a similar way, a flexible 
on-board stream processing method of sensor data of a 
vehicle is introduced in [21].

4. PSEUDO-ANALYSIS

Let ⪯ be full order on [a, b]⊆[-∞, ∞].
The pseudo-addition ⊕ : [a, b]2 → [a, b] is a function 

that is commutative, non-decreasing with respect to ⪯, 
associative and with a zero (neutral) element denoted by 
0: Let [a, b]+ = {x | x ∈ [a, b], 0 ⪯ x}. The pseudo-multipli-
cation ⊙ : [a, b]2 → [a, b] is a function that is commutative, 
positively non-decreasing, i.e., x ⪯ y implies x ⊙ z ⪯ y ⊙ z for 
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all z ∈ [a, b]+ , associative and with a unit element 1∈ [a, b], 
i.e., for each x∈ [a, b], 1⊙x = x. The pseudo-multiplication ⊙ 
is distributive over the pseudo-addition ⊕, i.e., x ⊙ (y ⊕ z) = 
(x ⊙ y) ⊕ (x ⊙ z), and 0 ⊙ x = 0. The interval [a, b] equipped 
with pseudo-multiplication ⊙ and pseudo-addition ⊕ is a 
semiring, denoted by ([a, b], ⊕, ⊙) (see [10], [14]).

We list three characteristic cases:
Case I: (Idempotent ⊕ and non-idempotent ⊙)  

x ⊕ y = sup(x, y), is an arbitrary not idempotent pseudo-
multiplication on the interval [a, b]. A full order is in-
duced by the idempotent operation sup as follows: x ⪯ 
y if and only if sup(x, y) = y. The pseudo-multiplication 
⊙ is generated by an increasing bijection g : [a, b]→[0, 
1], x ⊙ y = g -1(g(x) · g(y)). It holds 0 = a and 1 = g -1(1).

Case II: (g-semiring) The pseudo-operations are de-
fined by x ⊕ y = g -1(g(x) + g(y)) and x ⊙ y = g -1(g(x) · g(y)), 
where g : [a, b] → [0, 1] is continuous and monotone.

Case III: (Idempotent ⊕ and idempotent ⊙)
 x ⊕ y = sup(x, y), x ⊙ y = inf(x, y), on the interval [a, b]. 
Here is 0 = a, 1 = b and the pseudo-addition induces the 
usual order. Let X be a non-empty set and A be a σ-algebra 
of subsets of X, i.e., (X, A) be a measurable space.

Definition 3: 
A σ-⊕-measure is a set function m : A → [a, b]+ such 

that the following conditions are fulfilled:
(i) m (⌀) = 0 (for non-idempotent ⊕)
(ii) for any sequence (Ai) i ∈N  of mutually disjoint sets 

from A, we have: 
The pseudo-characteristic function of a set A is de-

fined by

A step (measurable) function is a mapping e : X → [a, 

b] that has the following representation

for αi ∈ [a, b] and sets Ai∈A are pairwise disjoint if ⊕ is 

nonidempotent.

Definition 4: 
Let m : A → [a, b] be a σ-⊕-measure.
(i) The pseudo-integral of a step function e : X → [a, 

b] is defined by

(ii) The pseudo-integral of a measurable function f : X 
→ [a, b], (if ⊕ is not idempotent we suppose that 
for each ε > 0 there exists a monotone ε-net in f 
(Z) is defined by

where (en)n∈N is a sequence of step functions such that 
d(en(x), f(x))→0 uniformly as n→∞.
For more details see [9], [14].
We shall consider the semiring ([a, b], ⊕, ⊙) for three cases, 

namely I, II and III. If the pseudo-operations are generated 
by a monotone and continuous function g : [a, b] → [0, ∞], 
then the pseudo-integral for a measurable function f : X 
→ [a, b] is given by,

where the integral on the right side is the Lebesgue in-
tegral. When X = [c, d] , A = B (X) and m = g -1 ◦ λ, λ the 
Lebesgue measure on [c, d] , then we use notation

This form of pseudo-integral is known as the g-integral, 
see [14]. When the semiring is of the form ([a, b] , sup, ⊙), 
cases I and III and function ψ: X → [a, b] defines σ-sup-
measure m by m (A) =  ψ (x) , then the pseudo-integral 
for a function f : X → [a, b] is given by

5. APPLICATION OF PSEUDO-ANALYSIS

Many applications can be found in [2], [9], [12], [13], 
[14], [16]. We shall give here only two applications.

A. Image approximation

If one replaces the sum with the maximum , the 
general form of a max-product approximation operator 
is obtained:

where Kn(· , xi) : X → [0, ∞[, i = 0,..., n, are a given con-
tinuous functions. Here f : X → [0, ∞[ is a continuous 
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function on a compact metric space (X, d). Let also, xi ∈ X, 
i ∈ {0,..., n}, n ≥ 1 be fixed sampled data. Such an opera-
tor was used in image approximation can be found in [7] 
where max-product Shepard operator was defined and 
studied. In several cases, max-product approximation 
outperforms classical linear approximation in the sense 
that they lead to essentially better error estimates, if for 
example Bernstein basis is used in the construction of 
max-product operators.

As second case we consider a pair of operators ⊕ and 
⊙ from case II. We use these pairs of operations instead 
of the standard addition and multiplication of the reals 
as follows:

where Kn,i(x) : X2→[0,1] are given continuous functions, 
i=1,..., n. The operator Pn is continuous and pseudo-linear. 
In the formula (5) fi denotes the classical discrete cosine 
transform of the target function f, and K where g-1 is the 
inverse of the generator function g, and An,i is a function 
defined through the cosine function for all i=1,..., n. Then 
Pn(f, x) in (5) is called the pseudo-linear inverse DCT, see 
[3]. The pseudo-linear DCT has very good reconstruction 
property, i.e., in image compression. 

B. Pseudo-linear superposition principle for Perona 
and Malik equation 

Partial differential equators are successfully applied 
to the relevant problem of image processing, see [1], [4], 
[20]. In that method, a restored image can be seen as a 
version of the initial image at a special scale. An image u 
is embedded in an evolution process, denoted by u(t,·). 
The original image is taken at time t=0, u(0,·)=u0(·) and 
is then transformed. The idea is to construct a family of 
functions {u(t, x)}t>0 representing successive versions of 
u0(x). As t increases u(t, x) changes into a more and more 
simplified image. We would like to attain two goals. The 
first is that u(t, x) should represent a smooth version of 
u0(x), where the noise has been removed. The second is to 
be able to preserve some features such as edges, corners, 
which may be viewed as singularitis. The heat equation 
has been (and is) successfully applied to image process-
ing but it has some drawbacks. It is too smoothing and 
because of that, edges can be lost or severely blurred. In 
[1] authors consider models that are generalizations of the 
heat equation. The domain image will be a bounded open 
set Ω of ℝ2. The following equation is initially proposed 
by Perona and Malik [20]: 

where: c: [0,∞[→]0,∞[. If we choose c≡1, then it is 
reduced on the heat equation. If we assume that c(s) is a 
decreasing function satisfying c(0)=1 and lims→∞c(s)=0, 
then inside the regions where the magnitude of the gradi-
ent of u is weak, equation (6) acts like the heat equation 
and the edges are preserved.

We have proved in [18] that the pseudo-linear super-
position principle holds for Perona and Malik equation.

Theorem 5: 

If u1=u1(t, x) and u2=u2(t, x) are solutions of the equa-
tion

The obtained results will serve for further investiga-
tion of weak solutions of the equation (7) in the sense 
of Maslov [9], [12], [16], [17], with further important 
applications.
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