
878

SINTEZA 2014  Intelligent system

Abstract:
XML is a markup language that defines a set of rules for encoding semi-structured data in
a readable format for both humans and machines, in other words the increase of various
XML data as information source has raised a number of issues about how to represent and
manage this data. Find out an ontology knowledge to derive semantics of XML document
has become a major challenge in semi-structured data management. XPath and XQuery
languages are used for selecting nodes and compute values from XML document, tuple
the XML tree and address the problem of XML data clustering according to structure with
ontology knowledge. Experiment on real XML database gives evidence that our proposed
approach is highly effective in tupling and clustering of XML tree. So this paper will propose
Sedna, which is a free native XML database that provides flexible XML processing facilities
include W3C XQuery implementation. Finally we will discuss the results of No. of replayed
nodes and time taken by XPath or XQuery.

Key words:
Sedna,
XML clustering,
XPath,
XML trees,
XML tuples,
XQuery.

MANAGING XML TREES USING XPATH, XQUERY,
CLUSTERING AND TREE TUPLES OVER
SEDNA XML DATABASE

 Hasham Elzentani
Singidunum University, Belgrade, Serbia

Impact of Internet on Business activities
in Serbia and Worldwide

Uticaj Interneta na poslovanje u Srbiji i
svetu

doI: 10.15308/SInteZa-2014-878-881

INTRODUCTION

XML is touted as the driving-force for representing
and exchanging data on the Web. Indeed, the semi-struc-
tured and self-describing physiognomy of XML makes it
feasible to model a broad variety of data as XML docu-
ments, in order to ful� ll the promises of the next gen-
eration Web. In such a context, a challenge is inferring
semantics from XML documents according to the avail-
able syntactic information, namely structure and content
features. � is has several interesting application domains,
such as integration of data sources and query processing,
that can be seamlessly generalized to any kind of semi-
structured data. As a fundamental exploratory data min-
ing task, clustering represents the natural solution to dis-
cover common characteristics and speci� c facets exhibited
by XML documents. However, the complexity intrinsic to
semi-structured data requires non-trivial e� ort to de� ne
an e� ective clustering framework. Extracting signi� cant
features, modeling document structures and contents,
de� ning an appropriate notion of homogeneity between
documents are only some of the issues to be addressed [7].

XML TREES AND PATHS

A tree T is a tuple T = <rT ,NT ,ET , λT>, where NT ⊆ N
denotes the set of nodes, rT ∈ NT is the distinguished root
of T, ET ⊆ NT × NT denotes the (acyclic) set of edges, and λT
: NT ↦ ∑ is a function associating a node with a label in the

alphabet ∑. Let Tag, Att, and Str be alphabets of tag names,
attribute names and strings, respectively. An XML tree XT
is a pair XT = <T, δ>, such that: (1) T is a tree de� ned on
the alphabet ∑= Tag ∪ Att ∪ {S}, where symbol S ∉ Tag
∪ Att is used to denote the #PCDATA content model, (2)
given n ∈ NT, λT (n) ∈ Att ∪ {S} ⇔ n ∈ Leaves(T), (3) δ:
Leaves(T) ↦ Str is a function associating a string to a leaf
node of T.

An XML path p is a sequence p = s1.s2… .sm of symbols
in Tag ∪ Att ∪ {S}. Symbol s1 corresponds to the tag name
of the document root element. An XML path can be of
two types: tag path, if sm ∈ Tag, or complete path, if sm ∈
Att ∪ {S}. We denote as PXT the set of complete paths in
XT.

Let XT = <T, δ> be an XML tree, and p =s1.s2... .sm
be an XML path. � e application of p to XT identi� es
a set of nodes p(XT) = {n1, …, nh} such that, for each i
∈ [1..h], there exists a sequence of nodes, or node path,

 with the following properties: (1)
and , (2) is a child of , for each j ∈ [1.. m-1],
(3) , for each j ∈ [1..m].

Moreover, we say that the application of a path to an
XML tree yields an answer, which is de� ned depending
on the type of path. In case of a tag path p, the answer of
p on XT is exactly the set of node identi� ers p(XT), that
is AXT (p)≡ p(XT). For a complete path p, the answer of p
on XT is de� ned as the set of string values associated to
the leaf nodes identi� ed by p, that is AXT(p) = {δT(n) | n ∈
p(XT)} [7][9].

879

SINTEZA 2014  Intelligent system

XML TREE TUPLES

Tree tuples resemble the notion of tuples in relational
databases and have been proposed to extend functional
dependencies to the XML setting [8][9]. In a relational da-
tabase, a tuple is a function assigning each attribute with a
value from the corresponding domain. According to [8],
we provide the following de� nition:

Given an XML tree XT , a tree tuple T is a maximal
subtree of XT such that, for each (tag or complete) path p
in XT, the answer AT(p) contains at most one element. We
denote as TXT the set of tree tuples from XT. Intuitively,
a tree tuple is a (sub) tree representation of a complete
set of distinct concepts that are correlated according to
the structure semantics of the original tree. Moreover,
tree tuples extracted from the same tree maintain iden-
tical structure while re� ect di� erent ways of associating
content with structure as they can be naturally inferred
from the original tree. For example consider the XML tree
shown in � gure 1, which represents two journal articles
from the DBLP (year 2013) archive. Any internal node
has a unique label denoting a tag name, whereas each leaf
node is labeled with either name and value of an attribute,
or symbol S and a string corresponding to the #PCDATA
content model. Path answers can be easily computed: for
example, path dblp.article.title yields the set of node iden-
ti� ers {n7, n28}, whereas path dblp.article.author.S yields
the set of strings {‘E. F. Codd’, ‘C. J. Date’}. � ree tree
tuples can be extracted from the example tree (see � gure
2). One tree tuple is extracted starting from the le� subtree
rooted in the dblp element. Two tree tuples are instead
extracted starting from the right subtree rooted in dblp,
as in this subtree there are two paths dblp.article.author,
each of which yields a distinct path answer corresponding
to the articles’ author [7][9].

(A)

(B)
Fig. 1. Example of DBLP XML document and its tree.

Fig. 2. The tree tuples extracted from the XML tree of figure
1-B.

XPATH

� e XML Path Language, is a query language for se-
lecting nodes from an XML document. In addition, XPath
may be used to compute values (e.g., strings, numbers,
or Boolean values) from the content of an XML docu-
ment. XPath was de� ned by W3C. � e XPath language
is based on a tree representation of the XML document,
and provides the ability to navigate around the tree, se-
lecting nodes by a variety of criteria. For example, the
XPath expression /book/chapter/section navigates from
the root of a document (designated by the leading slash
“/”) through the top-level “book” nodes, to their “chapter”
child nodes, and on to their child nodes named “section”.
� e result of the evaluation of the entire expression is the
set of all the “section” nodes that can be reached in this
manner. Furthermore, at each step in the navigation the
selected nodes can be � ltered using quali� ers. A quali� er
is a boolean expression between brackets that can test
the existence or absence of paths. So if we ask for /book/
chapter/section[citation] then the result is all “section”
elements that have a least one child element named “cita-
tion” [3][4][5].

XQUERY

XQuery is a query language designed by the W3C, it’s a
functional programming language that is designed to que-
ry and transform collections of structured and unstruc-
tured data, usually in the form of XML. XQuery contains
a superset of XPath expression syntax to address speci� c
parts of an XML document. It supplements this with a
SQL-like “FLWOR expression” for performing joins. A
FLWOR expression is constructed from the � ve clauses
a� er which it is named: FOR, LET, WHERE, ORDER BY,
RETURN (for instance see � gure 3)[2].

880

SINTEZA 2014  Intelligent system

XQuery has a rich set of features that allow many dif-
ferent types of operations on XML data and documents,
including: selecting information based on speci� c criteria,
� ltering out unwanted information, searching for infor-
mation within a document or set of documents, joining
data from multiple documents or collections of docu-
ments, sorting, grouping, and aggregating data, trans-
forming and restructuring XML data into another XML
vocabulary or structure, performing arithmetic calcula-
tions on numbers and dates and manipulating strings to
reformat text [1].

Fig.3. Example of XQuery.

SEDNA

Sedna is a free native XML database which provides
a full range of core database services persistent storage,
ACID transactions, security, indices, hot backup. Flex-
ible XML processing facilities include W3C XQuery im-
plementation, tight integration of XQuery with full-text
search facilities and a node-level update language. � e
Sedna client application programming interfaces (APIs)
provides programmatic access to Sedna from client ap-
plications developed in host programming languages.
� e Java API provides programmatic access to XML data
from the Java programming language. Using the Java API,
applications written in the Java can access one or more
databases of the Sedna DBMS and manipulate database
data using the database languages (XPath or XQuery) [6].

EXPERIMENT

In our experiment, a laptop with speci� cation in table
I has been used, 50 MB XML database has been loaded to
Sedna server and Sedna’s java API which provides pro-
grammatic access has been used to access XML data from
NetBeans IDE (7.4 Beta).

Table. 1. System specifications.
Specifi cati ons details

processor Intel ® Core ™ i5-2430 m CpU @ 2.40 GHz

ram 6 GB

Hard disk 700 GB

operati ng System
Windows 7 Home premium, Service pack 1
(64-bit)

Sedna version 3.5

XPaths

XPath is the XML Path Language that used for select-
ing or navigating nodes from an XML document using
queries. Ten di� erent types of XPath queries has been

used (see Table II) to measure query’s time and number
of replayed nodes. From result in table 2 and � gure 4,
we � nd out that the time has taken to answer query is
depending on the number of replayed nodes, position of
node in tree and the query itself, as example Q3 it takes
much more time than the others, because Q3 has to select
all descendent nodes of the current node that match the
selection and satisfy the condition.

Table. 2. XPath result.

Que-
ry

Xpath expression

Query answer

num-
ber of

replayed
nodes

time
(ms)

Q1
/dblp/arti cle/author[3] 44862 4.0

Q2
/dblp/arti cle[author[3]]/
pages[last()] 42133 1.0

Q3
//phdthesis[@
mdate=’2012-04-18’] 6020 3698.0

Q4
/dblp/phdthesis/url 3615 1.0

Q5
/dblp/inproceedings/* 16 2.0

Q6
/dblp/
inproceedings[year>=1974] 2 2.0

Q7
/descendant::book 1 1.0

Q8
//book/isbn 1 0.0

Q9
/dblp/www[author and year] 7 3.0

Q10
/dblp/www[author or year] 17 2.0

XPath Queries and replayed time.

XQueries

XQuery is a functional programming language that is
used to query a tuple (group) of XML tree. XQuery uses
XPath syntax for addressing di� erent parts of an XML
document. In this part, XQueries have used the XPath
queries which illustrated in section A to cluster and tuple
XML tree. From result in Table III and � gure 5, we � nd
out a proportional relationship between the time taken
to answer the query and the size of resulted subtree (de-
pending on the tree tuples of XML tree and how it’s been
clustered).

881

SINTEZA 2014  Intelligent system

Table. 3. XQuery results.

Que-
ry

XQuery expression
time
(ms)

Q1

<dblp> { let $author := doc(‘arti cle’)//dblp/
arti cle/author[3] return <arti cle>{$author}</
arti cle>} </dblp>

507.0

Q2

<dblp> { for $pages in doc(‘arti cle’)//dblp/
arti cle[author[3]]/pages[last()] return $pages}
</dblp>

461.0

Q3

<dblp> { for $phdthesis in doc(‘arti cle’)//
phdthesis where $phdthesis[@mda-
te=’2012-04-18’]return $phdthesis} </dblp>

303.0

Q4
<dblp> { for $url in doc(‘arti cle’)//dblp/phd-
thesis/url return $url} </dblp> 21.0

Q5

<dblp> { for $inproceedings in doc(‘arti cle’)//
dblp/inproceedings/* return $inproceedings}
</dblp>

7.0

Q6

<dblp> { for $inproceedings in doc(‘arti cle’)//
inproceedings, $year in $inproceedings/year
where $inproceedings/$year/(text()>=1974)
return <inproceedings>{$inproceedings/*}</
inproceedings>} </dblp>

5.0

Q7
<dblp> { for $book in doc(‘arti cle’)//
descendant::book return $book} </dblp> 6.0

Q8
<dblp> { for $book in doc(‘arti cle’)//book re-
turn <book>{$book/isbn}</book>} </dblp> 2.0

Q9

<dblp> { for $www in doc(‘arti cle’)//www
where $www[author and year]return
<www>{$www/*}</www>} </dblp>

4.0

Q10

<dblp> { for $www in doc(‘arti cle’)//
www where $www[author or year]return
<www>{$www/*}</www>} </dblp>

5.0

Fig. 5. XQueries and replayed time.

CONCLUSION

� e ontology knowledge to derive semantics of XML
document has become a major challenge in semi-struc-
tured data management. XPath and XQuery languages
used for selecting nodes and compute values from XML
document, tuple the XML tree and address the problem
of XML data clustering according to structure with ontol-
ogy knowledge. So this paper proposed tree tuples using
XPath and XQuery over Sedna XML database.

XPath is a regular expression, a � lter for an XML
tree and it is the transformational component of XSLT.
XQuery is a programming language used to select several
nodes from an XML document for the purpose of process-
ing using di� erent queries, XQuery uses XPath syntax for
addressing di� erent parts of an XML document. � e joins
are performed using the FLWOR expression. � is expres-
sion has � ve clauses, namely, WHERE, ORDER BY, FOR,
LET, and RETURN.

From section A we found that the time taken to answer
query was depended on the number of replayed nodes,
position of node in the tree and the query expression itself
(structure of expression). From section B we found a pro-
portional relationship between the time taken to answer
the query and the size of resulted subtree (depended on
the tree tuples of XML tree and how it’s clustered).

REFERENCES

[1] Priscilla Walmsley, “XQuery”, April 2007.
[2] W3C, “XQuery 3.0: An XML Query Language”, October

2013, http://www.w3.org/TR/xquery-30/
[3] Bergeron, Randy, “XPath-Retrieving Nodes from an XML

Document”, October 31, 2000.
[4] Pierre Geneves, “Course- � e XPath Language”, October

2012.
[5] Pierre Geneves, “Logics for XML”, December 2006.
[6] Sedna, http://www.sedna.org/
[7] Andrea Tagarelli, Sergio Greco, “Toward Semantic XML

Clustering”.
[8] M. Arenas and L. Libkin, “A Normal Form for XML Docu-

ments”, ACM Trans. Database Systems, 29(1):195–232,
2004.

[9] S. Flesca, F. Furfaro, S. Greco, and E. Zumpano, “Repairs
and Consistent Answers for XML Data with Functional
Dependencies”, In Proc. Int. XML Database Sym-posium
(XSym), pages 238–253, 2003.

