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Abstract: 

Ima  ge inpainting finds numerous applications in object removal, error concealment, view 
synthesis, and so on. Among the existing methods, exemplar-based inpainting has been 
shown to achieve superior performance when filling in large areas. This paper presents a 
review of inpainting based on sparse representations, as a generalization of conventional 
exemplar-based inpainting. The importance of data-driven adaptation of the sparsity level 
according to the image content is emphasized. Experimental results show that incorporating 
data-adaptive sparsity leads to improvement in both subjective and objective inpainting 
performance compared to well-known exemplar-based inpainting. 
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INTRODUCTION

Image inpainting [1], [2], [3] is a process of � lling in 
parts of an image that are damaged, missing, or need to 
be removed, in a plausible manner, so that the resulting 
image maintains a natural look and feel. Some of the ap-
plications of image inpainting include: 

 ◆ Object removal [4], [5], [6], where an undesired ob-
ject is cut out and replaced by the data that naturally 
completes the image. An example is given in Fig. 1 
where, at the top, an image with an undesired ob-
ject (a person) in the right part is shown. � e bot-
tom image, where the undesired object has been 
removed, is the result of the algorithm presented 
in this paper. 

 ◆ Error concealment [7], [8], where a part of the im-
age is damaged due to errors in transmission. In this 
case, damaged parts of the image have to be � lled-in 
based on the correctly received data.

 ◆ Disocclusion for view synthesis [9], [10], [11], where 
a view of the scene from a new viewpoint needs to 
be synthesized with the help of other views. In this 
case, foreground objects o� en occlude parts of the 
background that are visible from the new viewpoint. 
� ese areas need to be � lled-in appropriately to 
generate a realistic view. 

Early work on image inpainting [1], [2] was based on 
partial di� erential equation (PDE) modeling of pixel dy-
namics. More recently, exemplar-based methods such as 

[4] have become popular. In these methods, the structure 
and texture of the area that needs to be � lled in (hence-
forth referred to as the “hole”) is inferred by sampling 
from the known parts of the image. � e � lling proceeds 
step by step, from the boundary of the hole towards its 
interior, usually one patch at a time. 

Most recently, inpainting based on sparse representa-
tion [5], [6] has emerged as an extension of early exem-
plar-based methods. In this approach, one assumes that 
the patches used to � ll in the hole can be represented as 
sparse linear combinations of elements from a dictionary 
constructed from the known parts of the image. 

� is paper presents a review of image inpainting us-
ing sparse representation. � e importance of adapting 
the sparsity level according to the image content is em-
phasized, and a simple method for doing so is described. 
While adaptive sparsity has been studied before in the 
context of image reconstruction [12], our approach is 
much simpler - it does not involve multilayer processing 
and makes use of the information already computed in the 
process of determining the � ll order.

� e paper is organized as follows. In Section II we 
brie� y review the inpainting method of Criminisi et al. 
[4], which is considered the gold standard of examplar-
based inpainting methods. In Section III we review the 
basics of sparsity-based inpainting and describe a simple 
data-adaptive approach for setting the sparsity constraint. 
Experimental results are presented in Section IV, followed 
by conclusions in Section V.
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Fig. 1. An example of object removal by image inpainting. Top: image 
with a foreground object in the right part. Bottom: image with the 

object removed from the right part.

EXEMPLAR-BASED INPAINTING

Among the exemplar-based methods for image in-
painting, the approach of Criminisi et al. [4] is among 
the best known and most widely used. In this section, we 
brie� y review their method and introduce the notation, 
which will be used throughout the paper.

When an object needs to be removed from an image, 
the user identi� es the object by indicating the locations of 
its pixels in an object mask, as shown in Fig. 2 (top) for 
the image from Fig. 1. Alternatively, the user may indicate 
the object’s pixels by a special color, as is common in the 
inpainting literature [4], [6]. When the object is cut out 
of the image, a hole is created, which needs to be � lled in 
based the data from the remainder of the image. 

Fig. 2 (bottom) illustrates several important concepts. 
� e whole image is denoted . � e hole (also referred to 
as the target region) is denoted , the area with available 
pixels (also known as the source region) is denoted , and 
the boundary between  and , referred to as the � ll front, 
is denoted . � e green square indicates an image patch, 
usually  or , centered at pixel , which is lo-
cated on the � ll front . � e patch itself is denoted . 
Note that the patch covers both available pixels and miss-
ing pixels.

Vector  is a unit vector orthogonal to the � ll front at 
point . Vector  is orthogonal to the image gradient at 
point , so it indicates the dominant edge direction at that 
point. Hence, the scalar product  is a measure of 
the extent to which edges are orthogonal to the � ll front at 
point . Criminisi et al. [4] de� ne a data term  that is 
proportional to this scalar product, as

(1)

where  is the normalizing constant (typically ).

Fig. 2. Top: object mask for the image in Fig. 1. Bottom: adapted from 
[4]; illustration of the terminology used in Criminisi et al. inpainting.

Another important concept is the con� dence term, 
which is de� ned as

(2)

where  if , and  otherwise. Hence, the 
numerator in (2) counts how many pixels in the patch  
are available, while the whole con� dence term  rep-
resents the fraction of available pixels in . 

� e priority of a patch along the � ll front is computed 
as the product of data and con� dence terms, that is 

(3)

At each iteration, the patch with the maximum prior-
ity along the � ll front is found,  
its best matching patch in the source region is identi� ed

(4)
and the pixel values in the missing locations are trans-

ferred from  to . In (4),  is a measure of dis-
tance between patches, e.g., Euclidean distance. A� er � ll-
ing in the pixel values, the con� dence values of the � lled-in 
pixels are set to , data terms (1) are computed along 
the new � ll front, and the procedure repeats until the en-
tire hole is � lled. 

INPAINTING BASED ON SPARSE 
REPRESENTATION

One of the limitations of exemplar-based inpainting 
in [4] is that it can only transfer existing pixel patterns 
from the source region into the hole. In order to allow 
more � exibility, one could consider linear combinations 
of existing pixel patterns as possible � ll data. Inpainting 
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based on sparse representation is a formalization of this 
idea, where the number of terms in the linear combina-
tion is kept small. 

Sparse representation of image patches

Consider an  patch  centered at . Let  be 
a  column vector representing a column-wise vec-
torized version of , i.e., . In the case of 
color images where patches are , di� erent color 
components are stacked column-wise, so  would be a 

 vector. Let  be a  (or , in case 
of color images) matrix, which will be referred to as the 
dictionary. Its columns, which have the same dimension as 
vectorized patches, will be referred to as atoms. Dictionary 

 can be learned from the patches source region [5], [13]. 
Alternatively, all patches in the entire source region can be 
considered as a large dictionary [6]. Sparse representation 
of  in terms of the atoms in  can be found by solving 

(5)

where  stands for the  norm. Vector  is re-
ferred to as the sparse coding vector. Solving (5) is di�  -
cult because the  norm constraint is not convex. Popu-
lar workarounds include replacing the  norm by the  
norm [14], which is convex and sparsity-promoting, or by 
using an iteratively reweighted  approximation to the 

 norm [15].

Recovery based on sparse representation

Suppose  represents a patch on the � ll front, such 
that some of its pixels are missing. Let  be the column 
vector of dimension  where  (  for 
color images), which is obtained from  by removing 
the elements corresponding to the missing pixels. Analo-
gously, let  be the truncated dictionary, obtained from  
by removing the rows corresponding to the missing pixels 
in . � en the missing pixels in  can be approximate-
ly recovered by � nding a sparse representation of  in 
terms of , 

(6)

then using  to recover the full patch  from , 
(7)

Note that if  and  are normalized to contain unit 
column vectors, as would normally be the case when using 
fast sparse solvers [13], then the elements of  obtained 
from (6) need to be scaled appropriately before comput-
ing (7). Also note that when  contains all the patches in 
the source region and , sparse recovery is equiva-
lent to the exemplar-based inpainting described in Section 
II, when  in (4) is the squared Euclidean distance. 
Hence, inpainting based on sparse recovery is a generaliza-
tion of exemplar-based inpainting.

Adapting the sparsity level

Fig. 3 shows an image inpainted using the exemplar-
based approach described in Section II, when the source 
region is the entire image minus the hole. While the grass 
� eld in the lower right part is inpainted reasonably well, 
an artifact is created in the smoother region of the sky 
above the tree line. Similar artifacts have been observed 
by the authors in [6]. � e reason for such behavior is that 
low texture in smooth regions does not provide su�  cient 
discrimination of matching patches in the source region, 
potentially leading to false matches and creating artifacts 
such as those shown in Fig. 3. 

On the other hand, recovery based on sparse repre-
sentation inherently possesses smoothing capabilities. 
Since the recovered patch is a weighted average of selected 
dictionary members, the higher the number of non-zero 
terms in the sparse coding vector , the smoother the 
resulting patch can be expected to be. It would therefore 
seem bene� cial to relate the sparsity constraint  to the 
desired smoothness of the reconstructed patch. In order 
to do this, one can make use of the data term , which 
measures the strength of the edges incident on the � ll 
front. � e higher  is, the lower  should be. 

In our implementation, we have used the following ap-
proach to adapt :

(8)

where  and  are constants and  represents the 
largest integer no greater than . Suitable values for  
and  were empirically found to be  and 
. As  increases, meaning that the strength of edges 
incident on the � ll front  increases,  reduces to , that 
is, the inpainting method becomes exemplar-based. At the 
other extreme, if ,  becomes , which 
is  with our parameter settings. Hence, up to  diction-
ary elements will be selected for sparse recovery in smooth 
areas.

Fig. 3. Inpainting of the image in Fig. 1 using the method of Cri-
minisi et al. [4]. Note the artifact above the tree line in the right part 

of the image.

In our implementation, the sparse coding problem (6) 
is solved via Matching Pursuit (MP) [16]. Although gen-
erally suboptimal, it leads to reasonably good results (e.g., 
Fig. 1 bottom) and it can be computed in at most  it-
erations. � e � rst iteration amounts to � nding the column 
of  that is most correlated with , which is essentially 
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the same as solving (4) when  is the squared Euclide-
an distance. Subsequent iterations perform the same pro-
cedure using the current approximation error instead of 

 itself. � e source region is set to be the neighborhood 
of the hole dilated by a square structuring element of di-
mension . � e dictionary is taken to contain all patches 
in the source region; in other words, no dictionary learn-
ing is employed. 

It is worthy of noting that [6] employed a similar meth-
od for inpainting based on sparse representation, but with 
the following important di� erences. First, the  norm was 
replaced by the  norm in (6), which necessitated using a 
di� erent sparse coding algorithm. Second, the size of the 
source region was not clearly speci� ed; it was mentioned 
that the entire image minus the hole could be used as the 
source region. Finally, and perhaps most importantly, 
sparsity adaptation was not considered. 

EXPERIMENTS

We compare the presented adaptive-sparsity method 
with two versions of the Criminisi et al. [4] approach. � e 
� rst is the “default” version, where the source region is the 

entire image minus the hole, and the other is the “restrict-
ed” version, where the source region is the same as in the 
adaptive-sparsity method - the neighborhood of the hole 
dilated by a square structuring element of dimension . 

Two methodologies have emerged for testing image 
inpainting methods. In one approach, a natural image 
is taken, and an object from this image is selected for re-
moval [4], [6]. � is approach has the advantage of mim-
icking practical applications of object removal, however, 
the downside is that the performance cannot be judged 
objectively, because it is not known what really lies behind 
the object that needs to be removed. � ere is no objective 
ground truth, so the results are only judged subjectively. 
� e other approach is to deliberately insert an object into 
an image and then try to remove it. � is approach was 
taken in [5] by adding text to an image, and then remov-
ing it. Although somewhat arti� cial, the advantage of this 
approach is that a well-de� ned ground truth exists, so that 
both objective and subjective assessment of the inpaint-
ing method is possible. In this work, we take the latter ap-
proach. However, instead of adding text, we add a large 
object (e.g., the person in Fig. 1 top), which leads to a more 
challenging inpainting problem. 

        

        

        

        

      
          Original                            Object inserted                 Default Criminisi           Restricted Criminisi           Adaptive sparsity

Fig. 4. Some visual results.
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Speci� cally,  images were selected from the image 
database [17]. � e database contains images of various 
resolution. � e images selected for experiments had a 
4:3 aspect ratio and were resized to , without 
changing the aspect ratio. For each image, the object was 
inserted once in the le�  part and once in the right part 
of the image, giving a total of  test images. Several ex-
amples are shown in Fig. 4. � e � rst column shows the 
original image, followed, respectively, by the image with 
the object inserted, and the results of default Criminisi in-
painting, restricted Criminisi inpainting, and the adaptive-
sparsity method. 

It can be seen from Fig. 4 that all three inpainting meth-
ods provide considerable level of realism in the inpainted 
images. At � rst look, it is o� en not immediately obvious 
whether anything is wrong with these images. A closer ex-
amination, however, reveals the presence of various arti-
facts, most notably in the default Criminisi result, but also, 
to a lesser extent, in the restricted Criminisi result and in 
the images produced by the adaptive-sparsity method. It 
can also be seen that some features of the original image 
cannot be recovered by inpainting. For example, in the 
bottom row, the person standing on the street in the origi-
nal image (� rst column), who is completely obstructed by 
the inserted object (second column), cannot be recovered, 
since there is no information about the presence of this 
person in the remainder of the image.

Next we turn to objective evaluation. For this purpose, 
we utilize the Peak Signal to Noise Ratio ( ) in dB, 
de� ned as 

(9)

where  is the mean squared error between the 
luminance components of pixels from the original image 
and pixels in the inpainted image. Results are shown in 
Table I. � e three digits in the image name identify the 
image index in the database [17] and the trailing letter 
(L/R) indicates whether the object was inserted in the le�  
or right part of the image. For each image, the best result is 
highlighted in bold typeface. When the di� erence between 
the top two  values is less than 0.05 dB, both are 
highlighted, since such di� erence is considered too small 
for meaningful distinction. 

As seen in the table, each of the three methods some-
times achieves the top result. Speci� cally, the default Cri-
minisi method achieved the top score 5 times, the restrict-
ed Criminisi approach was the highest-scoring 4 times, 
and the adaptive-sparsity method 19 times. However, on 
average, restricted Criminisi approach is better than the 
default Criminisi approach by about 0.6 dB, while the 
adaptive-sparsity method achieved a 0.5 dB advantage 
over the restricted Criminisi approach, and 1.1 dB over 
the default one. � ese results, together with the subjective 
results in Fig. 4, indicate that it is advantageous to restrict 
the source region to the neighborhood of the hole, and 
further gains can be achieved by averaging the patches in 
the source region in a content-adaptive manner, as is done 
in the adaptive-sparsity method. 

Table 1. Objective inpainting results

Image

luminance PSNR (dB) of inpainted holes

default Criminisi
restrict. Cri-

minisi
adapti ve spar-

sity

i009l 16.40 17.53 17.34
i032l 23.16 26.15 27.85
i038l 22.34 21.71 21.59
i052l 15.40 15.86 15.83
i059l 18.94 21.27 21.28
i088l 21.62 20.11 20.36
i089l 18.65 18.44 19.00
i094l 18.96 20.93 21.07
i109l 18.54 17.76 19.03
i116l 18.48 19.20 19.86
i155l 16.91 18.02 18.53
i255l 14.75 15.95 16.17
i009r 16.51 15.45 15.81
i032r 24.41 27.10 27.76
i038r 22.79 22.38 22.85
i052r 17.31 15.79 17.51
i059r 18.32 18.28 18.39
i088r 21.35 23.29 23.84
i089r 18.91 21.45 21.74
i094r 19.99 20.07 21.08
i109r 18.12 17.31 17.39
i116r 19.88 19.52 20.53
i155r 16.65 17.96 18.40
i255r 18.86 20.84 20.87
Avg. 19.05 19.68 20.17

CONCLUSIONS

We have reviewed several approaches for image in-
painting and presented an inpainting method based on 
sparse representation, where the sparsity constraint is 
adaptively adjusted according to the edge content incident 
on the � ll front. Adaptation is simple and e� ective, mak-
ing use of the data already computed in selecting the � ll 
order. Results indicate reasonable improvements in both 
subjective and objective quality of inpainted images. 
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