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Abstract: 
The theory of auction was first formalized by William Vickery. His classical contribution 
was one of the standards in the Game theory and it is contained in standard textbooks. This 
is an auction in which the highest bidder wins but pays only the second-highest bid. This 
variation over the normal bidding procedure is supposed to encourage bidders to bid the 
largest amount they are willing to pay. Optimization of payoff strategy for Vickery auction 
can be programed using game theory and computer algebra systems, as it is presented in 
this paper.  
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INTRODUCTION

In 1994 the United States government adopted an auc-
tion in selling the right on the radio frequency for pager 
service providers. Since then the governments all over 
the world have adopted auctions in selling the newly in-
vented rights for the private corporations. � e theory of 
auction was � rst formalized by William Vickery in 1961. 
In his original work on auction theory, William Vickrey 
pointed out several types of auctions used in practice [1]. 
His classical contribution is one of the standards in the 
Game theory. Applying game theory to the study of auc-
tions, Vickrey showed that some auctions are strategically 
equivalent and how to compute Nash equilibrium bid 
strategy for bidders [2]. 

� e terms Vickrey auction and the second-price 
sealed-bid auction are equivalent and used interchange-
ably. � e Vickrey auction has been widely advocated for 
multi-agent systems [3]. eBay’s system of proxy bidding 
is similar to Vickrey auction. A variant of a Vickrey auc-
tion, named generalized second-price auction, is used in 
Google’s and Yahoo!’s online advertisement programs [4], 
[5]. � ere were attempts to construct the payo�  matrix for 
two and more player game by simulation approach, and 
to show that the weak dominance holds for the second 
price auction [6]. 

Papers written on auctions are usually described us-
ing mathematical notation [7], and are not applicable for 
practical usage. � e main purpose of this paper is to show 
that programming of auctions is not di�  cult using Com-
puter Algebra Systems (CAS) [8]. Even more, inexperi-
enced user can use preprogramed code for simple analysis 
and optimization.  

COMPUTER ALGEBRA SYSTEMS

Computer Algebra System Features

A computer algebra system is a so� ware program that 
allows computing with mathematical expressions in a way 
which is similar to the traditional handwritten computa-
tions of the mathematicians and other scientists. Wolfram 
Research brought into the mainstream the original so� -
ware Mathematica in 1988 as the � rst computer algebra 
system [8]. � e main computer algebra system features 
are: symbolic handling of arbitrary formulas, exact and ar-
bitrary-precision arithmetic, symbolic expansion, factor-
ing, simpli� cation and substitution, symbolic integration, 
di� erentiation, summation, limits and series, symbolic 
solvers for systems of equations, di� erential equations, 
and di� erence equations, full support of elementary and 
special functions, exact and symbolic matrix operations. 
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� e so� ware is integrated with MathWorld’s encyclope-
dic website of mathematical information. � ousands of 
ready-built interactive demonstrations of mathematical 
concepts can be used as starting point for speci� c applica-
tions. Web interface is provided using webMathematica. 
Some other so� ware companies o� er valuable CAS solu-
tions. Maxima is a descendant of Macsyma, the legendary 
computer algebra system developed in the late 1960s at the 
Massachusetts Institute of Technology. Texas Instruments 
came with a computer algebra system based on Derive, 
and was one of the � rst calculators to o� er 3D graphing. 
MuPAD is a computer algebra system that was purchased 
by MathWorks and the MuPAD code was included in the 
Symbolic Math Toolbox add-on for MATLAB. Maple is a 
commercial computer algebra system developed and sold 
commercially by Mapleso� . 

Financial Engineering with Mathematica

An extraordinary encyclopedia of option pricing tech-
niques is presented in [9]. Authors from the Hebrew Uni-
versity have published several articles in Mathematica in 
Education and Research. Much of this material had its 
origins in courses on � nancial engineering [10]. 

In some papers it is described a step-by-step procedure 
for developing code for some economic functions. It starts 
with the simplest case and the user can add new more 
complicated features, such as more players in the auction 
game simulation [6]. � is can be confusing for inexperi-
ence users. Actually, some very complex procedures can 
be programmed with just a few code lines using powerful 
built-in CAS functions, as it is presented in this paper. 

Mathematica has fully integrated support for many 
of the tools used in classical and modern � nance. � ese 
capabilities include � nancial instrument valuation (Fi-
nancialDerivative, FinancialBond), advanced time value 
of money computations (TimeValue, Cash� ow, E� ec-
tiveInterest, AnnuityDue, Annuity), and advanced � nan-
cial charting with a library of technical indicators (Inter-
activeTradingChart, TradingChart, CandlestickChart). 
Mathematica also provides immediate access to a large 
array of � nancial and economic data, and contains � nan-
cial import and export tools for working with external 
data. More information on the Vickery auction and game 
theory is provided by Wolfram Alpha.  

Knowledge based system and applications using CAS

Many researchers start their work by studying theory 
in order to get better insight into observed phenomena. 
Sometimes they cannot get the numeric values of param-
eters presented in the published reports. � is is even more 
complicated when the theory is statistical and there are no 
closed form deterministic solutions. An original approach 
and method to analyzing mathematically written papers, 
such as Expectation-Maximization (EM) algorithm is pre-
sented in [11]. 

An original algorithm that combines design and 
synthesis step, using computer algebra system, with the 

optimization for targeted implementation technology is 
presented in [12]. � e approximation step is based on Ge-
genbauer polynomial and the corresponding cost func-
tion. � e knowledge, in the form of mathematical expres-
sions, is typed into CAS and therea� er is automatically 
performed optimization using speci� ed criteria. 

� e straightforward procedure for the design and analy-
sis of uniform and nonuniform digital systems based on ap-
proximately linear phase IIR � lters and frequency response 
masking technique (FRM) are derived using CAS [13]. 

� e same approach can be used for developing any 
algorithm, such as the aeronautical communication sys-
tem that have to provide more communications capacity 
and to increase capabilities [14]. � e improvements are 
necessary to be able to cope with the expected air tra�  c 
growth in future. � e main idea is to automate the design 
procedure starting from the block diagram of the system 
and carrying out the implementation code on the target 
hardware. � e role and importance of symbolic computa-
tion in communication systems is exempli� ed on OFDM 
(Orthogonal Frequency Division Multiplexing). � e de-
velopment tools are Mathematica, and application so� -
ware SchematicSolver [15]. 

� e market for telecommunications networks and 
services is constantly changing. So is the regulatory ap-
proach. Technological progress creates new challenges for 
the creation of a level playing � eld between traditional and 
new operators and service providers. CAS can be used to 
analyze and develop new applications and services that 
can be more robust to economic impacts [16]. 

ALGORITHM OF VICKERY AUCTION

In this paper we will use algorithm described in [6]. 
Vickery auction is the second price auction, in which the 
winner is the highest bidder, while the winner pays the 
second highest bid price to acquire the object. � e true 
valuations of the object are denoted by vi, and this value 
can be di� erent for di� erent i bidders. � e strategy sets 
are si  ∈ Si = {10, 20, ..., 10ni}, where 10<vi<10 ni. When 
player A1 selects a strategy, s1 and player A2 selects a strat-
egy s2 from the set Si, and s1>s2, player A1 is the winner, 
and A1 pays s2 to acquire the object. In that case, the pay-
o�  of player A1 is p1=v1-s2 and the second payo�  is p2=0. 

Suppose that v1=40 and v2=20, and the bidding is se-
lected from the strategy sets s1=60, and s2=50. � e winner 
is A1 because s1>s2, and the payo� s are p1=40-50=-10, and 
p2=0. Obviously, player A1 pays 10 more than the true 
value for player A1. 

In another case, v1=40 and v2=20, and the bidding is 
selected from the set s1=60, and s2=30. � e winner is A1 
because s1>s2, and the payo� s are p1=40-30=10, and p2=0. 
� e player A1 pays 10 less than his true value. 

Suppose that v1=40 and v2=20, and the bidding is se-
lected from the strategy sets s1=20, and s2=30. � e winner 
is A2 because s2>s1, and the payo� s are p1=0 and p2=20-
20=0. � e player A1 loses this time. 

� e strategy of bidding with lower value than the true 
value is better because the payo�  is larger, but the prob-
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ability to win is much lower. � e strategy of bidding with 
highest value than the true value is better because it is 
more promising to win, but the payo�  can be lower and 
even negative – paying more than the true value. 

� e special case is when two or more bidders have the 
same strategy value that is the largest value, for example 
s1=s2. In this case, the winner is selected by lottery, so that 
the probability for each player becomes the winner is 1/2. 
If the winner is player A1, A1 pays s1=s2 to acquire the 
object, and the payo�  of player A1 is the expected value, 
p1=(v1-s1)/2, while the second player A2 has the expected 
value p2=(v2- s2)/2. 

Suppose that v1=40 and v2=20, and the bidding is se-
lected from the strategy sets s1=30, and s2=30. � e winner 
can be A1 or A2 because s1=s2, and the payo� s are p1=(40-
30)/2=5, and p2=(20-30)/2=-5. Obviously, payo�  of player 
A1 is positive, while payo�  of the second player is nega-
tive; A2 pays more than his true value. 

In this paper we are describing how to program and 
play this auction in an attempt to determine the optimal 
bidding strategy with the highest payo� .  

PROGRAMMING WITH MATHEMATICA 

� e code for calculating the payo�  is de� ned as a func-
tion, payo� Vickery, that has two arguments, the true 
valuations of the object vABCD, and the bidding prices 
sABCD, where arguments are matrices. � e length of ma-
trices is equal to the number of bidders. � is means that 
the presented code works for arbitrary number of players, 
where the minimal number of players is 2. 

payoffVickery[vABCD_,sABCD_]:=Module[
 {i,oABCD,nABCD,lABCD,pABCD=0 vABCD},
  oABCD=Ordering[sABCD];
  nABCD=Last[Tally[sABCD[[oABCD]]]][[2]];
  lABCD={oABCD[[-1]],oABCD[[-2]]};
  Do[pABCD[[oABCD[[-i]]]]=(vABCD[[oABCD[[-
i]]]] -
   sABCD[[lABCD[[2]]]])/nABCD, {i,nABCD}];

  pABCD]

� e command Ordering sorts all values. � e number 
of equal largest bidds is stored in nABCD. � e two largest 
bidds are computed as lABCD. � e payo�  is calculated 
using Do loop, only for largest bids. � e auctioneer wants 
to sell and get the highest possible payment; this can be 
computed in a similar manner using another function, 
eVickery. 

eVickery[vABCD_,sABCD_]:=Module[
{i,oABCD,nABCD,lABCD,eABCD=0 vABCD},
  oABCD=Ordering[sABCD];
  nABCD=Last[Tally[sABCD[[oABCD]]]][[2]];
  lABCD={oABCD[[-1]],oABCD[[-2]]};
  eABCD=sABCD[[lABCD[[2]]]]]

Another important function is de� ned for computing 
random value for each player from the set of preferred 
strategies, sRandomInteger.

sRandomInteger[x_,xABCD_]:=
   10 RandomInteger[{1,xABCD+x/10}]

At the beginning of the program, we can de� ne the 
true values, vABCD, number of games, nsteps, and the 
initial matrices for storing results of each single game.  

vABCD={60,30,50,20,40};
nsteps = 4 104;
smX={}; pmX={}; emX={};

� is is the only knowledge that describes the Vickery 
auction. Once stored in the CAS, the knowledge can be 
used for computing any single auction, or a number of 
auctions with di� erent strategies based on arbitrary prob-
abilities. In order to prevent errors of inexperience user, 
the help and test instructions can be added in a similar 
way as in [15]. 

It is important to notice that the simplicity of the code 
is due to the powerful built-in functions of CAS, and the 
newly de� ned functions for auction can be used as they 
are built-in. � e new knowledge can be put at the begin-
ning of working notebook, or it can be stored as an ad-
ditional knowledge in a package that can be inputted into 
CAS by a simple input command.    

USING THE KNOWLEDGE FOR OPTIMIZATION

� e code for di� erent number of cases can be obtained 
by iterative evaluation of the de� ned functions for all pos-
sible values of strategies, say for i from the range -2 to 5. 

xRange=Table[i,{i,−2,5}];
Do[{
 xABCD = {xRange[[j]], 1, 2, 0, 1};
 SeedRandom[1];
 sABCD = 
   Map[sRandomInteger[vABCD[[#]], xAB-
CD[[#]]] &, 
   Table[i, {i, Length[vABCD]}]];
 pABCD = payoffVickery[vABCD, sABCD];
 eABCD = eVickery[vABCD, sABCD], 
  …},
{j, Length[xRange]}]

In this case, all possible strategies are i ∈ {-2, -1, 0, 1, 2, 
3, 4, 5}, where the corresponding bidding prices are 10i. It 
is interesting to notice that the random value is generated 
using the command Map. 

Map[sRandomInteger[vABCD[[#]],xABCD[[#]]] &,

In order to make sure we get the same sequence of 
pseudorandom numbers on di� erent occasions, the com-
mand SeedRandom[n] resets the pseudorandom gen-
erator, using n as a seed. 
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As an example, we can evaluate 40 000 iterations for 
randomly generated bidding prices with uniform distribu-
tion, with expected true values v1=60, v2=30, v3=50, v4=20, 
and v5=40, that is de� ned as vABCD={60,30,50,20,40}.  

Fig. 1. Payo�  p1 (solid line-circuils) and p3 (squares) for di� er-
ent strategies S1. 

� e di� erent strategies are de� ned only for the � rst 
bidder i ∈ {-2, -1, 0, 1, 2, 3, 4, 5}, that is s1max= v1+10i, or 
from the set of maximal bidding prices s1max ∈ {40, 50, 60, 
70, 80, 90, 100, 110}. For all other bidders, the strategy is 
to have only one value, s2max=30+10=40, s3max=50+20=70, 
s4max=20, s5max=30.

� e actual bidding price is randomly selected from the 
range 10≤ si≤si max, with the discrete uniform distribution. 
Fig. 1 shows that payo�  of the bidder with the highest true 
value v1 increases with higher s1max. � e payo�  of the bid-
der with the second highest true value v3 decreases with 
higher s1max. 

Fig. 2. Ratio of p1/ s1 for di� erent strategies S1. 

For the bidder with the highest true value v1, the ratio 
of the payo�  and the true value has a maximum for the 
strategy 0, that is s1max= v1, as it is presented in Fig. 2. � is 
can lead to a conclusion that the highest bid should not be 
larger than the true value that is an auction without a risk. 

For the bidder with the second highest true value v3, 
the ratio of the payo�  and the true value is a decreasing 
function for higher s1max, as it is presented in Fig. 3. 

Let us de� ne the di� erence of payo� s between two 
consecutive strategies, 

Δp(Strategy Si) = p(Strategy Si) – p(Strategy Si-1)     (1)

Fig. 3. Ratio of p3/ s3 for di� erent strategies S1. 

Fig. 4 illustrates that strategy 2 is probably the optimal 
because the strategy 3 and 4 are more risky and without 
considerably increased payo� s. 

Fig. 4. Δp1(Strategy S1) for di� erent strategies S1. 

� e payment e of the auctioneer is also increasing 
function when bidders take a highest risk, and the ex-
pected payment is presented in Fig. 5. 

Fig. 5. Payment for di� erent strategies S1. 

A� er determining the strategy for the bidder with the 
highest true value, the procedure can be repeated for all 
other players. Even more, the same program can be used 
for di� erent expected true values of each bidder, and the 
best strategy can be selected as the most preferable solu-
tion. It should be noticed that the bidding price is ran-
domly generated and that strategy determines the highest 
value of the strategy set. 
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CONCLUSION

� e Vickery auction for arbitrary number of players 
can be easily programed using powerful commands of 
computer algebra systems. Assuming di� erent strategies 
of players with the expected true values, the optimal strat-
egy can be easily computed for di� erent bidding prices. 

REFERENCES

[1] W. Vickrey, “Counterspeculation, Auctions, and Competi-
tive Sealed Tenders,” � e Journal of Finance, vol. 16, no. 1, 
pp. 8-37, March, 1961.

[2] D. Lucking-Reiley, “Vickrey Auctions in Practice: From 
Nineteenth-Century Philately to Twenty-� rst-Century E-
commerce,” Journal of Economic Perspectives, vol. 14, no. 
3, pp. 183–192, Summer 2000.

[3] T. W Sandholm, “Issues in computational Vickrey auc-
tions,” Interna-tional Journal of Electronic Commerce - 
Special issue: Intelligent agents for electronic commerce, 
vol. 4, no. 3, pp. 107-129, March 2000.

[4] B. Edelman, M. Ostrovsky, and M. Schwarz, “Internet 
Advertising and the Generalized Second-Price Auction: 
Selling Billions of Dollars Worth of Keywords,” American 
Economic Review, vol. 97, no. 1, pp 242–259, 2007. 

[5] H. R. Varian, “Position Auctions,” International Journal 
of Industrial Organization, 2007, vol. 25, pp. 1163–1178, 
December 2007.

[6] T. Fukiharu, Tools for Economic Research and Educa-
tion, Faculty of Economics, Hiroshima University, English 
translation from manuscripts written in Japanese,  
http://home.hiroshima-u.ac.jp/fukito/Englishindex.htm 

[7] N. Nisan, T. Roughgarden, E. Tardos, V. V. Vazirani, Al-
gorithmic Game � eory, Cambridge University Press, De-
cember 2007, pp. 559-564. 

[8] S. Wolfram, � e Mathematica Book, Cambridge: Cam-
bridge University Press, 2003. 

[9] W. T. Shaw, Modelling Financial Derivatives with Math-
ematica , Cambridge: Cambridge University Press, 1999.

[10] S. Benninga and Z. Wiener, “� e Binomial Option Pricing 
Mode,” Mathematica in Education and Research, vol. 6, no. 
3, 1997. 

[11] V. Mladenović, M. Lutovac, D. Porrat, “Symbolic Analysis 
as Universal Tool for Deriving Properties of Non-linear Al-
gorithms – Case study of EM Algorithm,” Acta Polytech-
nica Hungarica, vol. 11, no. 2, pp. 117-136, February 2014.

[12] M Lutovac, V Pavlovic, M Lutovac, “Automated Knowl-
edge Based Filter Synthesis Using Gegenbauer Approxima-
tion and Optimization of Pole-Q Factors,” Electronics & 
Electrical Engineering, vol. 19, no.  9, pp. 97-100, 2013.

[13] J. D. Ćertić, M. D. Lutovac, and L. D. Milić, “Approximately 
Liner Phase, IIR Digital Filter Banks,” Telfor Journal, vol. 5, 
no. 2, pp/ 107-112, 2013.

[14] M. Lutovac, V. Mladenović, and M. Lutovac, “Development 
of Aeronautical Communication System for Air Tra�  c 
Control Using OFDM and Computer Algebra Systems,” 
Studies in Informatics and Control, vol. 22, no. 2, pp. 205-
212, June 2013.

[15] M. Lutovac, D. Tošić, SchematicSolver Version 2.2, 2010. 
Available: books.google.com/books?id=9ue-uVG__JsC 

[16] V. D. Pavlovic, V. Mladenovic, M. Lutovac, Computer 
Algebra and Symbolic Processing in Modern Telecom-
munication Applications: A New Kind of Survey, in J. P. 
Barringer, ed, Telecommunications: Applications, Modern 
Technologies and Economic Impact, Nova Science Publish-
ers, 2014.   


