
616

SINTEZA 2014 Data security

Abstract:
Protecting PHP scripts from unwanted using, copying and modifications is a vast problem
today. Present solutions on source code level are mostly working as obfuscators, are free,
and are not providing any serious level of protection. Solutions that are based on encoding
opcode are more secure but are commercial and require closed-source proprietary PHP
interpreter’s extension. Furthermore, encoded opcode is not compatible with future ver-
sions of interpreters which involve re-buying encoders from authors. Finally, if extension
source-code is compromised, all script encoded by that solution are compromised too. In
this paper we present a novel model for free and open-source PHP script protection solution.

Key words:
PHP,
interpreted languages,
source code,
protection,
encryption.

Impact of Internet on Business activities
in Serbia and Worldwide

Uticaj Interneta na poslovanje u Srbiji i
svetu

doI: 10.15308/SInteZa-2014-616-619

ONE SOLUTION FOR PROTECTING PHP SOURCE CODE

 Nenad Ristić1, Aleksandar Jevremović2

1Sinergija University, BIH
2Singidunum University, Serbia

INTRODUCTION

Within the last few years, PHP has established to be
the most pervasive web platform round the world, oper-
ating in more than a third of the web servers across the
world. PHP’s development has not only been quantitative
but also qualitative. Every day more and more businesses
rely on PHP to run their applications which are critical
for their business. � is creates new jobs opportunities and
increases the demand for PHP developers. While the dif-
� culty of starting with PHP remains unchanged and very
low, the possibilities o� ered by PHP today allow devel-
opers to extend far beyond simple HTML applications.
� e reviewed object model allows for large-scale devel-
opments to be written more efficiently by using standard
object-oriented methodologies.

New XML support makes PHP the best language avail-
able for processing XML and, coupled with new SOAP
support, an ideal platform for creating and using Web
Services [1]. PHP is one of the most popular languages
for Web development. By December 2013, PHP was being
used by a remarkable 81.7% of sites according to W3Techs
- World Wide Web Technology Surveys [2]. One of the
really signi� cant problems for PHP developers today
is lack of free and high-quality solutions for protecting
source code of PHP Web applications. By “protecting
source code” usually two things are considered: 1) pro-
tecting source code to be viewed/modi� ed by others and
2) limiting protected application execution to speci� c In-
ternet domain or time period.

At this time, there are some solutions for protecting
PHP source code which, generally, belong to two key
groups. First group contains PHP source code obfusca-
tors, which are usually free, work with source code and
provide very low level protection. Second group contains
PHP encoders, which work with PHP opcode, thus pro-
vide higher level of protection, but are commercial and
require using proprietary closed-source PHP extension in
production environment.

Even if PHP encoders provide higher level of protec-
tion, there are two main problems when using them. First
problem is limited lifetime of encoded product because
source code is converted to opcode by current version of
PHP interpreter, and then opcode is encoded. � is means
that encoded solution becomes unusable with future ver-
sions of PHP interpreters that include some important
change of how source code is transformed to opcode. Be-
cause of this, developers are forced to buy new versions
of encoders and to recompile source code whenever PHP
version on Web server is upgraded. Frequent replace-
ments of application � les in production environment are
usually a painful task.

Second problem with using PHP encoders is depend-
ency of “third trusted part” - author of encoder. � is
means that whole security of application depends of
company that develops encoder. If encoder or extension
is compromised (source code is revealed to public), all so-
lutions encoded with that encoder are compromised, too.
Additionally, encoded PHP scripts are not protected from
encoder authors.

617

SINTEZA 2014 Data security

In this paper we are analysing possibilities and issues
with creating solution for high-quality protection of PHP
scripts. Standard cryptology models are used for this anal-
ysis. Based on the results of this analysis, we propose a
novel model for solution that provides solid protection of
PHP source code on both source code and opcode levels
and is not based on trusted third party.

CURRENT SOLUTIONS

Obfuscating source code

Obfuscation is a technique that transforms original
source code to its far more complex, confusing and un-
readable variant, while preserving code semantics [3]. � is
technique is used to prevent or decrease e� ciency of re-
verse engineering while providing the same functionality
with equal or similar performance. Obfuscating is usually
done by replacing variables and user de� ned functions
names to meaningless ones, by removing comments and
formatting, and by encoding source code with some of
built-in or user-de� ned encoding functions. Source code
obfuscating is very similar to optimization of source code,
with di� erence, that with obfuscation of code we are try-
ing to maximize obscurity while trying to minimize ex-
ecution time.

In exploration of approaches to obfuscate source code
conclusions from [4], [5] make following statement of the
code obfuscation code. Given a set of obfuscating trans-
formations Ot = {Ot1, Ot2 … Otn} and program P consisting
of source code objects (classes, methods, statements, etc.)
{So1, So2 … Sok}, � nd new program P’ = {…, So’j = Oti(Soj)
…} such that:

 ◆ P’ has the same functionality as P, for example the
conversions are maintaining semantic

 ◆ � e indistinctness of P’ must be at prime level so
that understanding and reverse engineering of P’
would be more time consuming than understand-
ing P

 ◆ � e resilience of every obfuscating transformation
Oti(Soj) is maximized, for example it will be to com-
plex and di� cult to construct an automated tool to
undo the obfuscating transformations or applying
a tool would be extremely time consuming.

 ◆ � e stealth of each obfuscating transformation
Oti(Soj) is maximized, for example the statistical
properties of So’j are similar to those of Soj.

 ◆ � e execution time delay of P’ because of obfuscat-
ing transformation must be minimized.

Using obfuscating can give good results when develop-
er wants to prevent so� ware crackers from understanding
parts of code and then illegally including them to other
Web applications. However, this technique shows poor
results when used for restricting usage of protected solu-
tion to speci� c domain name or time period, because, in
this case, pirates are not required to understand large por-
tion of code, but only to identify place where limitations
are de� ned. Having in mind that opcode modi� cations of
this type are not compatible with original interpreter, this
technique is limited to use with source code only.

Encoding/encrypting

Both encoding and encrypting are reversible data
transformation techniques that, however, contain es-
sential di� erences. Encoding implies using of publicly
known transformation algorithm with, if used, also pub-
licly known parameters. In other words, it is assumed
that anyone can decode encoded data if informed what
encoding algorithm was used for encoding. Encryption,
on the other side, is based on secret parameter (key) used
in transformation procedure. It is usually assumed that
transformation procedure algorithm is publicly known,
but it needs not to be.

Most of major PHP encoders today are actually acting
as encrypters because are assuming some secret compo-
nent that prevents encoded source code or opcode to be
decoded. � is component is usually algorithm (sometimes
combined with some encryption parameter like project
id or so) which explains why PHP interpreter extensions
for these encoders are closed source. � at, however, as
said before, creates unwanted dependency of encoder pro-
vider.

Protecting source code vs protecting opcode

� ere are signi� cant di� erences between protection on
source code level and protection on opcode level. Main
advantage of protection on source code level is compat-
ibility with future versions of PHP interpreter, while main
disadvantage of that approach is possibility to reveal origi-
nal source code if protection is broken.

On the other side, main advantage of protecting on the
opcode level is lack of possibility to reveal original source
code, while main disadvantage of that approach is limited
lifetime of protected scripts. In case of protecting opcode,
source code is interpreted by current version of PHP in-
terpreter before it is encoded/encrypted. However, opcode
compatibility with future versions of PHP interpreters is
much lower than it’s the case with source code. � is means
that developers o� en need to re-encode original source
code whenever hosting provider upgrades to next major
version of PHP interpreter. Having in mind that process
of replacing encoded scripts is happening in production
environment, it is naturally to want to do this as rarely as
possible. Also, re-encoding source code for new PHP ver-
sion usually implies buying new version of encoder.

ANALYSIS WITH CRYPTOGRAPHY MODELS

From cryptology aspect source code protection could
be seen as an establishing secure communication channel
between developer and PHP interpreter. Instructions, in a
form of source code, which represent secret message, are
encrypted and can only be decrypted by � nal interpreter.
Using standard characters for representing di� erent roles
in secret communication, Alice and Bob are developer and
PHP interpreter, while Eve is everyone else - including
Web server administrator. Encryption algorithm is con-
sidered to be publicly available in all wide used systems.

618

SINTEZA 2014 Data security

Fig. 1. Cryptology model of secured communication channel

Following presented model, main question that arises
is how to manage key(s) that is used for encryption/de-
cryption procedures. � is question leads to another ques-
tion: is symmetric or asymmetric cryptography more ap-
propriate using in this case? Additionally, trust in Bob’s
integrity must be reconsidered.

Symmetric or asymmetric cryptography

When using symmetric cryptography same key is used
for encryption and for decryption. � is opens a questions
- who generates the key (Alice or Bob), and how is key
distributed to the other part? If PHP interpreter generates
the key, that key can be stored locally, maybe even inside
interpreter’s binaries. However, how can this key securely
be distributed to developer, with no one else access to it,
even system administrator? � e same problem, even more
accented, remains in case when developer generates the
key and needs to distribute that to interpreter.

Fig. 2. Architecture using symmetric cryptography

By using asymmetric cryptography, the need for se-
cure channel is eliminated. Developer can encrypt PHP
source code by using PHP interpreter’s public key. � at
means that encrypted source code can only be decrypted
by using PHP interpreter’s private key, which is stored on
secure location. Additionally, developer can digitally sign
source code with his protected key so interpreter can be
sure that it’s coming from developer. � is is useful when
limiting application to work only with � les developed by
the same developer.

Fig. 3. Architecture using asymmetric cryptography

Lifetime of protected solution in this case is limited by
source code compatibility with future PHP interpreters
versions, or by digital certi� cate lifetime (which can be
unlimited), whatever comes � rst. However, problem of
location where PHP interpreter’s private key is stored, and
how it’s used, remains. Potential solution is storing private
key within interpreter’s binary, so only reverse engineer-

ing attack is possible. However, behaviour of interpreter
is not guaranteed because its source code can be changed
and then modi� ed interpreter could be used.

Main problem

As we can see from previous examples, there is no dif-
ference if we use symmetric or asymmetric encryption,
place for storing key that is used for source code decryp-
tion remains the main problem with protecting source
code. Another part of this problem is the fact that PHP
interpreter is open source, so it can be modi� ed to expose
decrypted source code before executing it. � at implies
that we cannot trust in Bob’s integrity, which means that
we can consider PHP interpreter on Web server as Eve,
too.

Reverse engineering

Reverse engineering goal is at gaining high-level rep-
resentations of so� ware systems from known low-level
objects, such as binaries, source code, execution traces or
historical information. Reverse engineering methods and
technologies play an important role in many so� ware en-
gineering tasks and quite o� en are the only way to get an
understanding of large and complex so� ware systems [6].

When evaluated from cryptology aspect, reverse en-
gineering process is analogy to cryptanalysis. By this we
mean that pirate is trying to read or modify message that
is not intended to be seen or modi� ed by him. Idyllic solu-
tion for this problem would be one that can’t be reverse
engineered even if reverse engineering is tried on CPU
level.

Question that arises is how deep we need to go in order
to provide another trusted part in secret communication
- component that will securely implement our programs
in environments being controlled and eavesdropped a by
potential pirates? And also, is it possible to have such a
component as open-source, without relying on secret pos-
sessed by disputed “trusted third part” - author of that
component? And � nally, even if the solution for this prob-
lem exists, will its price and complexity be appropriate for
using in cheap shared hosting environments?

For the purpose of this paper we set our goal to make
protected PHP scripts as safe as if they were typed in some
compiled language (like C, for example). � is also means
that protection from assembler lever reverse engineering
is not included in proposed solution.

PROPOSED SOLUTION

Based on exposed results and insights from cryptology
based analysis, we propose a novel solution model that
provides protection of PHP scripts on both source code
and opcode levels, and is not based on trusted third party.
Protection level of proposed solution is equal to currently
available commercial solutions, based on closed-source
components.

619

SINTEZA 2014 Data security

Fig. 4. Model of proposed solution

Architecture of proposed solution is explained on Fig
4. Two main components of proposed solution are PHP
source code compiler/encrypter and open-source exten-
sion for original PHP interpreter. Additional component
is random key generator, but for this purpose any (pseu-
do) random generator can be used.

PHP source code compiler works as a regular inter-
preter - converts source code to opcode - with exception
that result (opcode) is encoded/encrypted with freshly
generated key (which is known only to developer). � at
encoded opcode can be executed only with PHP inter-
preter that knows the secret key. Also, in order to increase
encoded scripts’ lifetime, encoder can encode source code
directly (with obfuscation if selected), without transform-
ing it to opcode. However, protection level in this case
will be signi� cantly lower because potential pirate will be
able to catch (obfuscated) source code as a result of exten-
sion execution. Even if working with source code instead
opcode is supported, this is not recommended because
it could be revealed by PHP interpreter modi� ed by the
eavesdropper.

Another component of proposed solution is open-
source (publicly available) extension for decoding previ-
ously explained encoded PHP scripts. However, this ex-
tension is completely unusable without having key which
is used for encoding PHP scripts. � at’s why extension is
compiled to binary by developer, and during that process
key is built-in binary result. However, in order to hide
location where key is stored in extension binary, exten-
sion compiler, before compiling, is randomly obfuscating
extension’s source code by adding random code snippets
and false keys as variables, that have no impact on exten-
sion behaviour. � is means that two results of independ-
ent compiling’s of extension, even with the same key, will
give completely di� erent results.

Next step for developer is to upload encoded PHP
scripts and compiled extension to share Web server and to
enable it when executing his protected scripts. Downside
of proposed solution is requirement for server adminis-
trator to allow users to load their own binary extensions.

CONCLUSION

In this paper we analysed problem of protecting intel-
lectual property in a form of interpreted languages source
code. PHP, as the most prevalent interpreted language for
Web development is used as an example. Our main analy-

sis is based on using of standard cryptology models and
which are used for analysing existing solutions, as well for
search for ideal theoretical model.

Essential problem for protecting PHP scripts, analysed
as cryptology model, is lack of another trusted part in se-
cured communication. PHP interpreter, in a role of an-
other part in secured communication, is an open-source
so� ware which behaviour is publicly know and can be
modi� ed by potential eavesdroppers/pirates.

Source code obfuscation is identi� ed as computation-
ally secure protection, while (human-based) breaking it
is analogy to cryptanalysis. However, the need for source
code to be understandable by interpreter eliminates ob-
fuscation as a serious standalone protection.

On the other side, source code or opcode encryption
requires trusted decryption part, at least as a secured space
where key used for decryption is stored and used. � is is
not possible with using completely open-source solution
for PHP interpreter. Using closed-source components
for decryption, which is case with existing PHP encoders,
creates security and commercial dependency of encoder
provider.

Solution’s model presented in this paper proposes hy-
brid approach where all components that provide scripts
protection (or secure communication, from cryptology
aspect) are publicly available and open-source. However,
decryption component is realized as PHP interpreter’s
extension and is obfuscated and compiled by developer.
Key, which is used for PHP scripts encryption, is integrat-
ed within aforementioned extension during the compiling
procedure.

REFERENCES

[1] Gutmans, Andi, Stig Bakken, and Derick Rethans. „PHP 5
Power Programming (Bruce Perens’ Open Source Series)“.
Prentice Hall PTR, 2004.

[2] http://w3techs.com/technologies/overview/programming_
language/all (available on 03.01.2013)

[3] Cho, Seongje and Chang, Hyeyoung and Cho, Yookun,
“Implementation of an Obfuscation Tool for C/C++ Source
Code Protection on the XScale Architecture”, Proceedings
of the 6th IFIP WG 10.2 international workshop on So� -
ware Technologies for Embedded and Ubiquitous Systems,
2008, ISBN: 978-3-540-87784-4, DOI: 10.1007/978-3-540-
87785-1_36

[4] Collberg, C., � omborson, C., & Low, D. (1998, Janu-
ary). Manufacturing cheap, resilient, and stealthy opaque
constructs. In Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages (pp. 184-196). ACM.

[5] Collberg, C., � omborson, C., & Low, D. (1998, May).
Breaking abstractions and unstructuring data structures.
In Computer Languages, 1998. Proceedings. 1998 Interna-
tional Conference on (pp. 28-38). IEEE.

[6] Pinzger, M., & Antoniol, G. (2013). Guest editorial: reverse
engineering. Empirical So� ware Engineering, 18(5), 857-
858.

