
SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

28
Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2021-28-33

Miodrag Živković1*,
Tamara Živković2,
Nebojša Bačanin1,
Ivana Strumberger1

1Faculty of Informatics and Computing,
 Singidunum University,
 Belgrade, Serbia

2School of Electrical Engineering,
 Belgrade, Serbia

Correspondence:
Miodrag Živković

e-mail:
mzivkovic@singidunum.ac.rs

NATURE-INSPIRED APPROACHES IN SOFTWARE TESTING
OPTIMIZATION

Abstract:
Software development is considered to be a fast growing industry that drives
numerous modern world domains forward. At the same time, software testing
and quality assurance, that is equally important branch of software industry,
resides in the shadows, far away from the spotlights. The goal of the software
testing is to detect defects in the software and ensure that it has sufficient
quality prior to the release.
The main objective of the software testing can be defined as finding the minimal
test suite that is still efficient enough to maintain the certain software quality.
Since the process of test cases generation performs a search for an optimal
test suite in a huge search space, and keeping in mind that the swarm intel-
ligence metaheuristics have already proven to be efficient optimizers in
other domains, it makes sense to apply swarm intelligence algorithms to the
process of test cases generation as well. By utilizing this approach, it could
be also possible to reduce the cost required for testing. This paper provides a
survey of recent applications of swarm intelligence algorithms in the domain
of software testing.

Keywords:
Cloud computing, information security, IT audit, compliance, ISMS.

INTRODUCTION

Software testing is a crucial activity that is often the decisive factor
that determines if a software project will succeed or fail. The defects can
be very expensive, especially if they were found late in the software devel-
opment process. In this case, the process of debugging and fixing is costly,
as the defect have probably propagated through multiple phases of the
development, and affected other parts of software, documentation etc.
Even worse, if defects haven’t been found during testing process, they will
typically be found by end-users in production, which will lead to finan-
cial loss, low customer satisfaction, poor reputation etc. Not to mention
possible human casualties (medical applications or autonomous car soft-
ware), substantial loss of client’s data and money (banking applications)

COMPUTER SCIENCE, COMPUTATIONAL METHODS, ALGORITHMS AND ARTIFICIAL INTELLIGENCE SESSION

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Computer Science, Computational Methods, Algorithms and
Artificial Intelligence Session

29

or leakage of client’s private data such as documents, con-
tacts, photos, call list and location (mobile applications).

Additionally, modern applications are complex, and
the task to perform appropriate testing implies knowl-
edge and mastery of different testing approaches. Most
of the traditional testing techniques were introduced for
simple procedural programs. However, the tester must
apply different approaches to test object oriented soft-
ware [1] or web applications [2].

Web applications are challenge on their own, as they
are typically built in several different programming lan-
guages. Frontend is typically built with HTML, CSS
and JavaScript, and it communicates with the backend
through AJAX. Backend, on the other hand, can be built
with either PHP, Node.JS, ASP .NET C#, or Java (JSP
or Spring, for example). Finally, there is also the data
persistence level, built with MySQL, Oracle, MongoDB
or MSSQL. The options are numerous, and all parts are
required to be tested thoroughly.

Besides the goals to find bugs in the software and en-
suring that the software behaviour is correct according
to the specification, software testing can be performed
with a goal to build confidence in the application as
well. The absence of critical defects will generally speak-
ing increase the confidence in the software. However,
one must be cautious as the actual absence of defects
doesn’t necessarily mean that the software is bug-free.
One of the core principles of testing is that exhaustive
testing is not possible for any non-trivial application, as
the number of all possible combinations of input val-
ues is too large to be tested in a reasonable amount of
time. In other words, the absence of defects just shows
that the utilized test suite was not able to detect any bug.
Therefore, the most important thing in software testing
is to create a test suite that will cover all the function-
alities of the application, with a special attention to the
functionalities that are the most visible to the end-users
(the functionalities that the users of the system will fre-
quently use) and the use case scenarios (how the users
will use the system).

According to the most estimations, software testing
takes more than 50% of both the time and the cost of the
software development process. This means that the test
cases generation process is crucial, and if done properly,
it can save the time and the cost of the entire project.
Nature-inspired metaheuristics are proven to be ex-
ceptional optimizers in variety of other application do-
mains, and it makes sense to assume that they can be ap-
plied in software testing as well, with a goal to optimize
the test cases generation, and consequently to reduce

the overall time and the cost of the complete project.
This paper presents a survey of recent applications of the
swarm intelligence and evolutionary algorithms in the
software testing process optimization. The remainder of
this paper is structured in the following way. Section 2
introduces the nature-inspired algorithms and gives the
survey of the most important methods and their appli-
cations in various practical domains. Section 3 gives an
overview of the practical implementations of the nature-
inspired algorithms in the software testing domain. Fi-
nally, section 4 suggest the possible future work in this
domain and concludes the paper.

2. SURVEY OF NATURE-INSPIRED
APPROACHES

NP-hard challenges play a vital role in the modern
computer science and have a significant practical impor-
tance in a large number of application domains, such as
machine learning, wireless sensor networks and cloud
systems. The common basis for all NP-hard problems
is that it is not possible to solve them by applying the
traditional deterministic approaches in an acceptable
time-frame. They require another, stochastic approach,
if the problem is to be solved in a reasonable time.

Metaheuristics methods belong to the group of sto-
chastic algorithms. Their main purpose is to obtain the
satisfactory solution to the problem (solution that is suf-
ficiently good, but not imperatively the best one) in a
predictable and reasonable time-frame [3]. The survey of
the recently published works indicate that metaheuris-
tics approaches have been used to solve a wide variety
of different practical NP-hard challenges. One famous
and important family of metaheuristics approaches are
the nature-inspired algorithms. Nature-inspired me-
taheuristics can be roughly separated into two distinct
sub-families: evolutionary algorithms (EA) and the
swarm intelligence (SI) metaheuristics, respectively.

The EA methods are inspired by the natural selec-
tion and the premise that only the fittest individuals in
a given population will survive. The fittest units are then
chosen for breeding, and generating the offspring for
the following generation that will inherit the favour-
able characteristics from the predecessors. After cer-
tain amount of iterations, the algorithm will produce
the generation of the fittest units (solutions). The most
famous representative of this group of algorithms is the
genetic algorithm (GA) [4]. It was successfully applied
in wide range of the practical NP-hard challenges, such
as the load-balancing problem in the cloud-based

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Computer Science, Computational Methods, Algorithms and
Artificial Intelligence Session

30

systems [5], machine learning based Covid-19 predic-
tion [6], design of the convolutional neural networks [7]
and many others.

The latter family of the nature-inspired approaches,
SI metaheuristics, was motivated by the behavior dem-
onstrated by the groups of relatively simple animals,
such as fireflies, bats, ants, moths, etc. Those simple
animals can self-organize, show high level of coordina-
tion and perform complex actions when they form large
groups (swarms). This particular feature of the swarms
was the main source of inspiration for all SI algorithms
[8]. Particle swarm optimization (PSO) was one of the
earliest SI algorithms, and was proposed by Kennedy
and Eberhart in 1995 [9]. It was inspired by the behavior
demonstrated by the flocks of birds. Since its introduc-
tion, it was used to solve a variety of real-life problems,
like cloud task scheduling [10]. Besides PSO, one more
famous representative of the SI metaheuristics is the
artificial bee colony (ABC) algorithm, inspired by the
behavior of the honey bees in a hive, and introduced
by Karaboga in 2007 [11]. ABC has also been used to
solve a large number of different problems in various
domains, for instance the portfolio problem as stated in
[12]. Other famous SI approaches include the bat algo-
rithm (BA) [13], firefly algorithm (FA) [14], and mon-
arch butterfly optimization (MBO) [15] to name the few.
Besides the mentioned metaheuristics approaches, there
are dozens of other algorithms belonging to the SI fam-
ily, with new approaches emerging every day.

Nature inspired approaches have recently been in-
tensively used to address a wide spectrum of different
NP-hard problems from a large number of application
domains. SI metaheuristics were applied in the domain
of the wireless sensor networks to solve the sensor node
localization problem [16], prolonging the network life-
time [17], [18] and maximizing the network energy ef-
ficiency [19]. Another field where the SI metaheuristics
have obtained respectable results is the cloud comput-
ing. SI was used to optimize the task scheduling by mini-
mizing the overall time required to execute all tasks and
the overall cost [20] [21] [22]. In the domain of machine
learning, SI was utilized to design the convolutional
neural networks [23], feed-forward neural network
training [24] etc. Nature inspired metaheuristics also
show very promising results in time-series prediction,
the feature that was used to predict the Covid-19 cases
[6] [25]. Finally, the SI approach was used to design a
convolutional neural network that performs the classifi-
cation task of the MRI images of the glioma tumor [26].

3. NATURE-INSPIRED APPROACH IN
SOFTWARE TESTING

As discussed in the introduction, generating test cas-
es and creating the appropriate test suite is crucial for
the success of the project. The deficiencies in the testing
process can be very costly and they will inevitably lead
to defects occurring in the production. There are two
contradictory requirements for a good test set. The first
requirement is that it must be detailed enough to test all
the important scenarios and paths through the program.
However, the second requirement demands that the cost
and time needed for testing are minimized as much as
possible. It is clear that if we try to add more tests to the
suite, we will increase the time and the cost of test execu-
tion. Vice versa, if we try to reduce the number of test
cases with a goal to save time and money, it could result
in the test suite which is not detailed enough and which
will miss some defects.

Scientists in the software testing domain around the
world have turned their attention to the artificial intel-
ligence and nature-inspired approaches with a goal to
address the test cases generation problem. As expected,
the most popular nature-inspired metaheuristics were
applied to this problem. The very first approach was to
use GA to generate unit test cases automatically with
a goal to obtain high code coverage. This approach is
known as evolutionary structural testing (EST), and it
was introduced all the way back in 1996 [27], and was
later refined in 2006 [28]. EST has established to be ef-
ficient and successful for various academic test object
instances, and also for some industrial projects. The
main principle of EST is as follows: it is impossible to
perform exhaustive testing, as the amount of time need-
ed to test all the possible combinations of input values
would be too long and impractical. Therefore, a subset
of input data that is relevant must be selected. The term
“relevant” here depends of the selected coverage crite-
ria. Coverage criteria for the white box approaches are
based on the control flow graph – CFG. For example,
if a generated test set executes all the statements in the
software component, it fulfills the statement coverage
criterion. However, most of the industrial software must
fulfill more strict criteria such as branch/decision cover-
age (all branches/decision outcomes in the CFG of the
software component being tested must be exercised) or
path coverage (all the independent paths through the
CFG must be covered), which affects what is considered
to be the “relevant” test set. The EST considers the test
cases generation as the optimization problem that needs

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Computer Science, Computational Methods, Algorithms and
Artificial Intelligence Session

31

to be solved by using the search method, for instance,
the GA. After selecting the test coverage criterion, the
code is divided in the individual test goals which will be
optimized separately. The fitness function is defined by
utilizing the two distance metric: approximation level
and branch distance, respectively. The former is related
to the CFG of the software component that is being test-
ed. More precisely, it correlates to the amount of criti-
cal branches, positioned between the problem and the
target nodes in the graph. Here, the target node is the
structure in the code that needs to be covered, while the
problem node is the code structure where the program
execution is diverging through a branch that will make
reaching the target not possible. The latter, branch dis-
tance metric, corresponds to the condition found in the
problem node. It serves to describe how close the condi-
tion has been evaluated to deliver the boolean result that
was required to reach the target.

The original EST approach with GA implementation
has been compared to the PSO implementation in [29].
The authors noted that since the PSO is easy to imple-
ment, efficient, and has the ability to converge fast to the
optimal parts of the search space, it could also enhance
the EST as well. They implemented both algorithms,
and selected the branch coverage as the code coverage
criterion. Furthermore, they considered each branch as
an individual testing goal that needs to be optimized.
They conducted the simulations over a total of 25 test
object instances with different levels of complexity that
have been created for the purpose of the experiment.
The obtained results have proven that the PSO – based
approach outperformed the GA in about 2/3 of the ob-
served test instances. The authors concluded that the GA
converges slightly faster if the functions are simple (in
terms of parameters passed by), while the PSO drasti-
cally outperformed the GA in case of complex functions
that have a large search space (mixed parameters, such
as boolean, integer and/or double that are passed by
when invoking the function). The final remarks of the
paper indicate that the PSO is competitive with GA, and in
cases of complex functions, it clearly outperforms the GA.

Paper [30] proposes the GA and PSO approach to
the process of the test cases generation, by identifying
the paths in software that are susceptible to defects. The
proposed approach was named HGPSTA (hybrid genet-
ic particle swarm technique algorithm), and it combines
the individual advantages of GA and PSO. The authors
have utilized the EST, that is used to generate the test
cases automatically. EST considers this task as an opti-
mization problem.

The GA has been hybridized with PSO with a goal
to enhance the efficiency of the process. The GA utilizes
three operators, namely selection, crossover and muta-
tion. The GA hybridized with PSO uses enhancement
operator, that is utilized to improve the units in the
same generation. After calculation of the fitness value
of all solutions of the population, the best half of so-
lutions are noted. The algorithm then applies the PSO
directly to improve the individual solutions. Crossover
operator includes only the improved solutions, and the
authors applied the roulette wheel scheme for the select-
ing process.

The proposed HGPSTA method was applied to the
fitness function that utilizes the data flow testing cover-
age criteria, and tested on the seven classic programming
problems. The HGPSTA was compared to the basic GA
and basic PSO. Published results suggested that the HGP-
STA approach was able to achieve 100% data flow cover-
age in less rounds than the basic GA and PSO algorithms,
resulting in a smaller number of required test cases.

Another hybrid approach was proposed in [31],
where the authors hybridized the GA with ACO, and
named the approach hybrid ant colony genetic algo-
rithm (HACGA). Their approach was based on the fault
matrix, with 15 different defect and 15 test cases, with
the assumption that every test case exposes at least one
defect. The problem was further formulated as choosing
the subset of the matrix’s rows that covers each column
(containing defects) at least once. The collection of test
cases is chosen by the ACO search, and then refined by
the GA. The conducted experiments included compari-
son with plain ACO and GA approaches as well. The
proposed HACGA outperformed both GA and ACO in
this particular test setup.

ACO – based approach was utilized as well in [32]
with a goal to generate test data to cover the prime paths
in the software. Prime paths in this context are the basic
paths (no repetitions), and loops are tested just with 0
and 1 passes through the loop. Path coverage is consid-
ered to be the most strict criteria among white box tech-
niques, as the 100% path coverage implies 100% decision
coverage and 100% statement coverage as well. There-
fore, covering the paths can discover defects that other
techniques are not able to. The authors have tested their
approach on seven benchmark programs with known
bugs, and compared it to PSO and GA approaches. The
obtained results suggested that ACO method outper-
forms the GA both in terms of coverage and efficiency.
When compared to the PSO, authors noted that ACO
obtains better test coverage than PSO, however, it is less
efficient than PSO.

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Computer Science, Computational Methods, Algorithms and
Artificial Intelligence Session

32

4. CONCLUSION

In this paper, we have performed a survey of nature-
inspired metaheuristics that found their use in optimiza-
tion of the software testing process. The hardest task in
the software testing is the test cases generation process.
The success of a software development project largely
depends on it – if the test set is not adequate, it can lead
to the complete failure of the project after the deploy-
ment. On the other hand, having a test set that has a
large number of test cases is not efficient both in terms
of the time and the cost required for the testing.

Nature-inspired metaheuristics have proven to be
efficient optimizers. From the performed survey, it can
be noted that there were several attempts to optimize
the test generation by applying famous algorithms, in-
cluding GA, PSO and ACO. The common goal for all
mentioned approaches is that they try to generate test
set that will increase the code coverage according to the
selected criterion (statement, decision or path coverage),
while decreasing the amount of test cases. It can be seen
from the presented approaches that other researchers
mostly play safe, by choosing and applying the tradi-
tional, famous algorithms. This leaves a lot of open space
for applying modern, state-of-the-art metaheuristics (for
example BA, FA or MBO), either in original, or their
hybridized and/or improved versions to the same prob-
lem, with a reasonable chance to improve the test cases
generation process even further.

Future research will focus on implementing one of
the more recent metaheuristics to the software testing
problem, and validating it against the traditional
approaches such as GA and PSO executed on the same
problem instance.

REFERENCES

[1] T. Živković and M. Živković, “Comparative Analy-
sis of Techniques for Testing Object Oriented Pro-
grams,” in 2020 Zooming Innovation in Consumer
Technologies Conference (ZINC), Novi Sad, Serbia,
2020.

[2] M. Živković and T. Živković, “Challenges in Testing
of Web Applications,” in Sinteza 2018-Internation-
al Scientific Conference on Information Technology
and Data Related Research, Belgrade, Serbia, 2018.

[3] I. Strumberger, N. Bacanin and M. Tuba, “En-
hanced firefly algorithm for constrained numerical
optimization,” in 2017 IEEE congress on evolution-
ary computation (CEC), San Sebastian, Spain, 2017.

[4] D. E. Goldberg, Genetic Algorithms in Search, Op-
timization and Machine Learning, Boston, MA,
USA: Addison-Wesley Longman Publishing Co.,
Inc., 1989.

[5] T. Wang, Z. Liu, Y. Chen, Y. Xu and X. Dai, “Load
Balancing Task Scheduling Based on Genetic Algo-
rithm in Cloud Computing,” in 2014 IEEE 12th In-
ternational Conference on Dependable, Autonomic
and Secure Computing, Dalian, China, 2014.

[6] M. Zivkovic, K. Venkatachalam, N. Bacanin, A.
Djordjevic, M. Antonijevic, I. Strumberger and T.
A. Rashid, “Hybrid Genetic Algorithm and Machine
Learning Method for COVID-19 Cases Prediction,”
in Proceedings of International Conference on Sus-
tainable Expert Systems: ICSES 2020, Nepal, 2021.

[7] M. Suganuma, S. Shirakawa and T. Nagao, “A Ge-
netic Programming Approach to Designing Convo-
lutional Neural Network Architectures,” in Proceed-
ings of the Genetic and Evolutionary Computation
Conference, Berlin, Germany, 2017.

[8] X. Yang, “Swarm intelligence based algorithms: a
critical analysis,” Evolutionary Intelligence, vol. 7,
no. 1, pp. 17-28, 2014.

[9] J. Kennedy and R. Eberhart, “Particle swarm optimi-
zation,” in Proceedings of the IEEE International Con-
ference on Neural Networks (ICNN '95), IEEE, 1995.

[10] M. Kumar and S. Sharma, “PSO-COGENT: Cost and
energy efficient scheduling in cloud environment
with deadline constraint,” Sustainable Computing:
Informatics and Systems, vol. 19, pp. 147-164, 2018.

[11] D. Karaboga and B. Basturk, “A powerful and effi-
cient algorithm for numerical function optimization:
artificial bee colony (ABC) algorithm,” Journal of
global optimization, vol. 39, no. 3, pp. 459-471, 2007.

[12] M. Tuba and N. Bacanin, “Artificial bee colony al-
gorithm hybridized with firefly metaheuristic for
cardinality constrained mean-variance portfolio
problem,” Applied Mathematics \& Information
Sciences, vol. 8, no. 6, pp. 2831-2844, 2014.

[13] X. Yang, “A New Metaheuristic Bat-Inspired Algo-
rithm,” in Nature inspired cooperative strategies for
optimization (NICSO 2010), Springer, 2010.

[14] X. Yang, “Firefly algorithm, stochastic test functions
and design optimisation,” International journal of bio-
inspired computation, vol. 2, no. 2, pp. 78-84, 2010.

[15] G. Wang, S. Deb and Z. Cui, “Monarch Butterfly
Optimization,” Neural Computing and Applications,
pp. 1-20, 2015.

[16] N. Bacanin, E. Tuba, M. Zivkovic, I. Strumberger
and M. Tuba, “Whale Optimization Algorithm with
Exploratory Move for Wireless Sensor Networks
Localization,” in International Conference on Hy-
brid Intelligent Systems, 2019.

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Computer Science, Computational Methods, Algorithms and
Artificial Intelligence Session

33

[17] M. Zivkovic, N. Bacanin, E. Tuba, I. Strumberger,
T. Bezdan and M. Tuba, “Wireless Sensor Networks
Life Time Optimization Based on the Improved
Firefly Algorithm,” in 2020 International Wireless
Communications and Mobile Computing (IWCMC),
2020.

[18] M. Zivkovic, T. Zivkovic, K. Venkatachalam and N.
Bacanin, “Enhanced Dragonfly Algorithm Adapted
for Wireless Sensor Network Lifetime Optimization,”
in Data Intelligence and Cognitive Informatics, 2021.

[19] M. Zivkovic, N. Bacanin, T. Zivkovic, I. Strum-
berger, E. Tuba and M. Tuba, “Enhanced Grey Wolf
Algorithm for Energy Efficient Wireless Sensor Net-
works,” in 2020 Zooming Innovation in Consumer
Technologies Conference (ZINC), Novi Sad, Serbia,
2020.

[20] T. Bezdan, M. Zivkovic, M. Antonijevic, T. Zivkovic
and N. Bacanin, “Enhanced Flower Pollination Al-
gorithm for Task Scheduling in Cloud Computing
Environment,” in Machine Learning for Predictive
Analysis, 2020.

[21] T. Bezdan, M. Zivkovic, E. Tuba, I. Strumberger,
N. Bacanin and M. Tuba, “Multi-objective Task
Scheduling in Cloud Computing Environment by
Hybridized Bat Algorithm,” in International Con-
ference on Intelligent and Fuzzy Systems, 2020.

[22] N. Bacanin, T. Bezdan, E. Tuba, I. Strumberger, M.
Tuba and M. Zivkovic, “Task scheduling in cloud
computing environment by grey wolf optimizer,” in
2019 27th Telecommunications Forum (TELFOR),
Belgrade, Serbia, 2019.

[23] I. Strumberger, E. Tuba, N. Bacanin, M. Zivkovic,
M. Beko and M. Tuba, “Designing convolutional
neural network architecture by the firefly algo-
rithm,” in 2019 International Young Engineers Fo-
rum (YEF-ECE), 2019.

[24] S. Milosevic, T. Bezdan, M. Zivkovic, N. Bacanin, I.
Strumberger and M. Tuba, “Feed-Forward Neural
Network Training by Hybrid Bat Algorithm,” in
Modelling and Development of Intelligent Systems:
7th International Conference, MDIS 2020, Sibiu, Ro-
mania, 2020.

[25] M. Zivkovic, N. Bacanin, K. Venkatachalam, A.
Nayyar, A. Djordjevic, I. Strumberger and F. Al-
Turjman, “COVID-19 cases prediction by using
hybrid machine learning and beetle antennae search
approach,” Sustainable Cities and Society, vol. 66,
2021.

[26] T. Bezdan, M. Zivkovic, E. Tuba, I. Strumberger, N.
Bacanin and M. Tuba, “Glioma Brain Tumor Grade
Classification from MRI Using Convolutional Neu-
ral Networks Designed by Modified FA,” in Interna-
tional Conference on Intelligent and Fuzzy Systems,
2020.

[27] B. F. Jones, H. Sthamer and D. E. Eyres, “Automatic
test data generation using genetic algorithms,” Soft-
ware Engineering Journal, vol. 11, no. 5, pp. 299-306,
1996.

[28] J. Miller, M. Reformat and H. Zhang, “Automatic
test data generation using genetic algorithm and
program dependence graphs,” Information and
Software Technology, vol. 48, no. 7, pp. 586-605,
2006.

[29] A. Windisch, S. Wappler and J. Wegener, “Applying
particle swarm optimization to software testing,” in
Proceedings of the 9th annual conference on Genetic
and evolutionary computation, 2007.

[30] A. Singh, N. Garg and T. Saini, “A hybrid approach
of genetic algorithm and particle swarm technique
to software test case generation,” International Jour-
nal of Innovations in Engineering and Technology,
vol. 3, no. 4, pp. 208-214, 2014.

[31] P. Palak and P. Gulia, “Hybrid swarm and GA based
approach for software test case selection,” Internation-
al Journal of Electrical and Computer Engineering, vol.
9, no. 6, 2019.

[32] A. M. Bidgoli, H. Haghighi, T. Z. Nasab and H. Sab-
ouri, “Using swarm intelligence to generate test data
for covering prime paths,” in International Confer-
ence on Fundamentals of Software Engineering, 2017.

