
SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

153
Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2021-153-157

Uroš Arnaut*,
Milan Tair,
Mladen Veinović

Faculty of Informatics and Computing,
Singidunum University,
Belgrade, Serbia

Correspondence:
Uroš Arnaut

e-mail:
uarnaut@singidunum.ac.rs

COMPARISON OF THE EFFICIENCY OF AES IMPLEMENTATIONS
ON MAJOR WEB PLATFORMS

Abstract:
In this paper, the authors present an experimental study covering the
evaluation of the average encryption and decryption times using different
programming languages for the Web. This study covers the use of the most
commonly used AES implementations for four major Web programming and
scripting languages: Java, Node.js, PHP and Python. The aim of the study is
to determine the cost of encrypting and decrypting data on these platforms,
expressed as type per byte of data. The experiment covers data encryption and
decryption with the AES algorithm in the CBC mode with 128-bit, 192-bit
and 256-bit keys. In this paper, we present the results and pros and cons of
use of the AES algorithm implementations on these major Web platforms.

Keywords:
AES, Web platforms, Experimental Study.

INTRODUCTION

Data encryption has become essential for companies to prevent clas-
sified information from leaking out. It means that all employee personal
information, usernames, passwords, and contacts stored in databases
should not be exposed. For example, the more prominent company is,
the more critical data set has to be stored. That means that companies
should not write plain text (open text form) in a database, especially
passwords, because if the information system gets exposed, there is a
possibility that the database is exposed as well. The third side can access
classified information, and they can harm employees and the company.
That is why encryption plays a big part in every information system.
Some companies are hiring other companies from the field of Cyber-
security to manage their classified data. Others are forming their teams.
However, this will not be a topic in this paper.

Today we have many different techniques for data encryption. In this
paper we will encrypt data that will simulate the most common file sizes
(word and excel, for example). The algorithm that will be used is AES
(Advanced Encryption Standard). Data will be encrypted and decrypted with
mostly used programming languages like Java, PHP, Python, JavaScript, etc.

INFORMATION SECUITY AND ADVANCED ENGINEEING SYSTEMS SESSION

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Information Secuity and Advanced Engineeing Systems Session

154

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Average encryption and decryption time will be calcu-
lated separately for every programming language in
attention to compare performances.

Advanced Encryption Standard (AES) is a symmetric
cryptographic algorithm using three different key sizes
128, 196, and 256 bits. When it was first introduced, the
algorithm had more than three key sizes, but they were not
accepted as standard. All data for encryption in the AES
algorithm is processed in bytes, which means that all initial
data, including the encryption key, is calculated in bytes.

The initial block size is 128 bits and all mathemati-
cal operations are performed with two-dimensional byte
arrays. The number of rounds of execution of the AES
algorithm depends on the length of the key.

The AES algorithm takes two inputs:

•	 The plain text, which needs to be encrypted;
•	 The key.

The key is usually accompanied by the initialisation
vector, commonly abbreviated as IV in implementations
of the AES algorithm in most programming languages.

The algorithm starts with the "Key Expansion," in
which round keys are derived from the original key. Af-
ter the expansion, an initial round occurs, in which the
original key is applied to the plaintext. Depending on
the key length, the algorithm will go through 9, 11, or 13
rounds. Each round performs four operations:

•	 Bytes substitution;
•	 Row shift;
•	 Mix columns; and
•	 Add Round Key.

Once these rounds are completed, one last round is
performed, which has no "Mix columns" step.

After the encryption, AES outputs the cipher-text.

2.	 WEB PROGRAMMING LANGUAGES

Companies need to secure data now and then, and
the best way is to use a secure algorithm with the most
efficient programming language. Nowadays, people use
encrypted data in everyday life. Social network sites,
electronic newspapers, media web-sites, etc are using
different algorithms, approaches, and methodologies to
secure used data.

There are many programming languages that can be
used on the Web. However, this research will focus on
the ones most commonly used for Web application de-
velopment [1, 2, 3, 4, 5].

2.1. JAVA

The Java programming language is a general-purpose,
concurrent, class-based, object-oriented language. It is
designed to be simple enough that many programmers
can achieve fluency in the language. The Java program-
ming language is related to C and C++ but is organized
somewhat differently, with several aspects of C and C++
omitted, and a few ideas from other languages included.
It is intended to be a production language, not a research
language [2].

In our research, we use the Crypto Java library [7].

2.2. PHP

PHP (recursive acronym for PHP: Hypertext Pre-
processor) is a widely-used open source general-purpose
scripting language that is especially suited for web devel-
opment and can be embedded into HTML. What distin-
guishes PHP from something like client-side JavaScript
is that the code is executed on the server, generating
HTML sent to the client. The client would receive the
results of running that script, but would not know the
underlying code. You can even configure your web server to
process all your HTML files with PHP, and then there's
no way that users can tell what you have up your sleeve
[8]. We used the latest PHP version 8.

In our research, we use the OPENSSL Cipher PHP
extension [9], which supports the AES algorithm in CBC
mode with key sizes 128, 192 and 256 bits [10].

2.3. JAVASCRIPT (USING THE NODE.JS PLATFORM)

Node.js is a server-side platform useful for building
highly scalable and fast applications. Node.js is a plat-
form built on v8, the JavaScript runtime that powers
the Chrome browser designed by Google. Node.js is de-
signed to be great for intensive I/O applications utilizing
the non-blocking event-driven architecture.

While Node.js can synchronously serve functions, it
most commonly performs operations asynchronously.
That means that when an application is developing,
events with a call-back registered for handling the re-
turn of the function is called. While awaiting the return,
our application's next event or function can be queued
for execution. Once the first function completes, its call-
back event is executed and handled by the function call
that invoked the call-back. Node.js is a platform built on
Chrome's JavaScript runtime for quickly building fast,

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Information Secuity and Advanced Engineeing Systems Session

155

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

scalable network applications. Node.js uses an event-
driven, non-blocking I/O model that makes it light-
weight and efficient, perfect for data-intensive real-time
applications that run across distributed devices [4].

In our research, we use the Crypto library [12].

2.4. PYTHON

Python is an interpreter, interactive, object-oriented
language. It incorporates modules, exceptions, dynamic
typing, very high-level dynamic data types, and classes.
It supports multiple programming paradigms beyond
object-oriented programming, such as procedural and
functional programming. Python combines remarkable
power with very clear syntax. It has interfaces to many
system calls and libraries and various window systems
and is extensible in C or C++. It is also usable as an
extension language for applications that need a
programmable interface [5].

In our research, we use PyCryptodome [14].

3.	 RESEARCH METHODS

For this research, we have used an experiment method
to generate research data. A simple encryption and
decryption program was written that automates the
generation of the research data. The generated data was
analyzed using quantitative analysis methods and the
analysis outputs were presented in the results and dis-
cussion section of this paper.

The experiment covered in this paper aims to help
identify the most efficient Web programming language
and its most commonly used implementation of func-
tions, methods of libraries for the use of the AES algo-
rithm for encrypting data. The AES keys used in the ex-
periment were 128-bit, 192-bit, and 256-bits in size. The
AES was configured in the CRC mode.

To ensure equal conditions, the data for encryption
was generated ahead of the experiment and stored in
files and read before use for encryption. When meas-
uring the time for encryption and decryption, only the
time it takes to perform the encryption and decryption
is measured in the highest precision possible in that
platform.

Most platforms support microsecond precision,
while Java supports nanosecond precision. To ensure
that the results are of the same resolution, the microsec-
ond precision was used for all platforms. There were a

total of 30 randomly generated files, whose sizes ranged
from 145 bytes to 8MB.

To ensure high precision, the process of encrypting
and decrypting this data was repeated 100 times for each
combination of data size and AES key size.

After the completion of this process, average times
for both actions have been calculated.

The experiment does not cover the following topics:

•	 Generating cryptographic keys;
•	 Sharing cryptographic keys;
•	 Saving cryptographic keys.

The experiment was performed on the same hard-
ware and software. The computer used to run this auto-
mated process used a 64bit Windows operating system,
a total of 4GB of RAM and an Intel i5 3300 @ 3.0GHz
3.1GHz processor.

During the execution of the research data genera-
tion process, all non-essential processes were turned off
and the system was disconnected from the Network. All
high-load software was turned off for the duration of
the experiment.

Table 1 shows the list of programming languages
covered by this research, as well as theirs versions.

keys := Map(
 128 => read contents from 128.key,
 192 => read contents from 192.key,
 256 => read contents from 256.key
)
FOR len IN List(128, 192, 256) DO
 FOR file IN List(*.data files) DO
 data := read contents from file
 key := keys(len)
 encTime := 0
 decTime := 0
 FOR i := 1 TO 100 DO
 start := time_μs()
 encrypted = AES_enc(size, len, data)
 encTime := encTime + time_μs() - start
 start := time_μs()
 AES_dec(size, len, encrypted)
 decTime := decTime + time_μs() - start
 END
 store_results(file, len, encTime, decTime)
 END
END

Listing 1 - The data generation algorithm

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Information Secuity and Advanced Engineeing Systems Session

156

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

4. RESULTS AND DISCUSSION

After running the previously mentioned programs
that generate the research data containing the informa-
tion about the size of the encrypted data, determined
from the file, the key size, identified by the length of the
key, in bytes as well as total encryption and decryption
times, we can create a set of raw data records for further
analysis.

Considering that the collected times of completion
of data encryption and decryption are based on a total
of 100 iterations, we have calculated the average encryp-
tion and decryption time per iteration. The increased
number of iterations has helped minimize noise which
may have occurred due to unexpected events on the op-
erating system.

To further enable direct comparison of these results,
these values were divided by the total size of the encrypted
data to generate information about the total time per
byte, for each combination of key size and programming
language and its platform.

Information about the average amount of time in
nanoseconds needed to complete encryption and
decryption of a single byte of data, grouped by the plat-
form, operation and key size, gained from the analysis
of the acquired data is shown in Figure 1.

Figure 1 - Experimental results

This figure helps visually conclude that in terms of
performance, in most cases Java has shown that it is the
best choice for data encryption in terms of average time
needed to complete decryption of data, while it was only

slower than PHP when performing encryption using a
128-bit key. PHP was second in terms of speed. PHP
was configured in such a way as not to use pre-loading
and PHP opcache for caching compiled code between
iterations. The Node.js platform was third in the overall
rating. However, it did end up slower than Python when
performing decryption using a 256-bit key. Python, on
the other hand, was by far the slowest of all four plat-
forms. Python also did not utilize any code caching and
was interpreted without using the pre-compilation op-
tion.

Considering these results of average time (in ns) to
complete encryption and decryption, it is clear that at
the moment, AES implementations in Java and PHP are,
performance-wise, the most efficient and fastest.

Table 2 contains average times (in milliseconds)
needed for the completion of encryption and decryp-
tion operations on each platform for contents ranging
from 145 bytes to 8MB in size.

 Java PHP Node.js Python

Da
ta

 si
ze

En
cr

yp
�o

n

De
cr

yp
�o

n

En
cr

yp
�o

n

De
cr

yp
�o

n

En
cr

yp
�o

n

De
cr

yp
�o

n

En
cr

yp
�o

n

De
cr

yp
�o

n

145B 0,0013 0,0005 0,0018 0,0017 0,0070 0,0097 0,0400 0,0400

232B 0,0017 0,0005 0,0020 0,0018 0,0070 0,0144 0,0300 0,0600

333B 0,0022 0,0005 0,0426 0,0335 0,0073 0,0118 0,0400 0,0500

459B 0,0027 0,0005 0,0024 0,0026 0,0091 0,0320 0,0400 0,0600

579B 0,0035 0,0006 0,0026 0,0027 0,0091 0,0137 0,0500 0,0400

591B 0,0035 0,0006 0,0025 0,0018 0,0079 0,0116 0,0300 0,0600

659B 0,0041 0,0006 0,0027 0,0019 0,0102 0,0122 0,0300 0,0600

926B 0,0046 0,0007 0,0114 0,0082 0,0099 0,0163 0,0200 0,1000

1KB 0,0056 0,0009 0,0034 0,0022 0,0189 0,0267 0,0200 0,0800

2KB 0,0071 0,0010 0,0035 0,0021 0,0114 0,0177 0,0200 0,0800

28KB 0,1773 0,0198 0,0519 0,0154 0,0809 0,1683 0,3200 0,3299

56KB 0,3295 0,0369 0,1028 0,0300 0,1443 0,2662 0,6599 0,5999

84KB 0,4882 0,0550 0,1547 0,0453 0,2527 0,3828 0,9698 0,8999

112KB 0,6819 0,0742 0,2053 0,0573 0,2439 0,5109 1,2199 1,2098

143KB 0,8419 0,0945 0,2723 0,0748 0,3543 0,6393 1,5498 1,5098

223KB 1,3651 0,1516 0,4106 0,1149 0,6092 1,1449 2,3996 2,3397

285KB 1,7549 0,1898 0,5273 0,1460 0,7792 1,7376 3,2994 2,9898

334KB 2,1195 0,2474 0,6196 0,1695 1,0055 1,9356 3,8194 3,5796

445KB 2,8507 0,3381 0,8234 0,2226 1,2196 2,4182 5,4692 4,7795

557KB 3,6301 0,4341 1,0220 0,2803 1,4020 5,6863 6,9892 6,3091

570KB 3,9280 0,4403 1,0383 0,2833 1,4466 1,7638 6,6889 6,1593

668KB 4,4360 0,4758 1,2305 0,3390 1,7143 2,1266 8,1588 7,1591

779KB 5,6277 0,6444 1,4393 0,3943 2,2629 2,5276 9,8085 8,8790

891KB 5,7979 0,6153 1,6400 0,4470 2,0848 2,5663 11,1185 10,0487

1.1MB 8,4281 0,8539 2,6979 1,1123 2,5725 3,0785 14,2283 13,0181

1MB 6,5069 0,6842 1,9483 0,5476 2,5700 3,1188 12,2284 10,8585

2MB 16,8804 1,8979 5,7596 2,4347 6,3440 6,5832 30,5859 28,0962

1.5MB 9,7235 1,2348 3,7038 1,5790 3,2954 4,3860 19,0072 17,4979

4MB 28,4921 3,7201 9,9686 4,2270 10,5812 13,5297 52,2828 48,2036

8MB 56,8131 17,6285 19,7981 8,5810 20,2340 29,9842 98,9467 91,9176

Table 2 - Average times (in ms) by data size

Based on the experimental data, we can conclude
that on almost all platforms, AES decryption in CBC
mode, regardless of the key size is faster than encryption.
Also, we can conclude that the compiled language Java
outperforms other platforms. Of all interpreted languages,
Python was least efficient in performing AES encryption
and decryption, on average.

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Information Secuity and Advanced Engineeing Systems Session

157

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

5.	 CONCLUSION

This study covered the most commonly used AES
implementations for four major Web programming and
scripting languages: Java, Node.js, PHP, and Python.
The study aimed to determine the cost of encrypting and
decrypting data on these platforms. The experiment has
covered data encryption and decryption with the AES
algorithm in the CBC mode with 128-bit, 192-bit, and
256-bit keys.

Results of the study show that decryption mode, al-
most all platforms, regardless of the key size is faster
than encryption mode. Experiment shows as well that
Java programming language has outperformed other
used web-based platforms when it comes up to the speed
of data encryption and decryption. We should consider
that the version of Java which was used was at let least
two years outdated compared to the release dates of oth-
er programming languages and platforms, this result.
PHP programming language had similar results as Java
while a 128-bit key was used, even better when it comes
up to encryption. Both platforms performed those pro-
cesses under 10 ns on the used hardware and software
configuration. The performance of Node.js and Python
AES implementations was not up to the authors expec-
tations. While using a 128-bit key, Node.js was slower
than Java and PHP when performing both the encryp-
tion and decryption operations. The Python implemen-
tation was the slowest.

We can conclude that Java is a platform which has
the most efficient AES implementation. When choos-
ing between interpreted languages, PHP is the second
best option for this particular job. Security issues of the
mentioned algorithms, as well as their implementation
with other libraries were not addressed in this paper.

In our future research we will endeavor to reduce the
impact of hardware and software configuration on the
performance of these on the AES implementations on
these and other platforms. We will aim to expand the list
of tested programming languages and platforms and to
test different implementations, using other, less-popular
libraries and packages for each language. Additionally,
we will endeavor to expand the list of tested languages
to other platforms, and not only those used for Web
application development.

REFERENCES

[1] 	 B. Eastwood, "The 10 most popular programming
languaes to learn in 2020," University Northeastern,
18 June 2020. [Online]. Available: https://northeast-
ern.edu/graduate/blog/most-popular-program-
ming-languages/. [Accessed 25 January 2020].

[2] 	 IEEE Spectrum, “Interactive: The Top Program-
ming Languages,” 2020. [Online]. Available: https://
spectrum.ieee.org/static/interactive-the-top-pro-
gramming-languages-2020. [Accessed 7 May 2021].

[3] 	 Statista, “Most used programming languages among
developers worldwide, as of early 2020,” Shanhong,
February 2020. [Online]. Available: https://statista.
com/statistics/793628/worldwide-developer-sur-
vey-most-used-languages/. [Accessed 7 May 2021].

[4] 	 Wappalyze, "Programming languages technologies
market share," 2020. [Online]. Available: https://
wappalyzer.com/technologies/programming-lan-
guages/. [Accessed 7 May 2021].

[5] 	 Datanyze, "Programming Languages Market Share,"
2020. [Online]. Available: https://datanyze.com/
market-share/programming-languages--67. [Ac-
cessed 7 May 2021].

[6] 	 Oracle, "Chapter 1. Introduction," Oracle, [Online].
Available: https://docs.oracle.com/javase/specs/jls/
se15/html/jls-1.html. [Accessed 25 January 2020].

[7] 	 Oracle, “Java Cryptography Architecture (JCA) Ref-
erence Guide,” [Online]. Available: https://docs.or-
acle.com/javase/8/docs/technotes/guides/security/
crypto/CryptoSpec.html. [Accessed 3 April 2021].

[8] 	 PHP Documentation Group, "What is PHP?". [On-
line]. Available: https://www.php.net/manual/en/
intro-whatis.php. [Accessed 25 January 2020].

[9] 	 PHP, "OpenSSL," [Online]. Available: https://php.net/
manual/en/book.openssl.php. [Accessed 5 April 2021].

[10] 	 PHP, "Function openssl_get_cipher_methods,"
[Online]. Available: https://php.net/manual/en/
function.openssl-get-cipher-methods.php. [Ac-
cessed 5 April 2021].

[11] 	 C. Gackenheimer, Node.js Recipes - A Problem-
Solution Approach, New York City: Apress, 2013.

[12] 	 Node.js, “Crypto | Node.js Documentation,” [On-
line]. Available: https://nodejs.org/api/crypto.
html#crypto_crypto. [Accessed 4 April 2021].

[13] 	 Python Software Foundation., "General Python
FAQ," Python Software Foundation., [Online].
Available: https://docs.python.org/3/faq/general.
html#what-is-python. [Accessed 25 January 2020].

[14] 	 H. Eijs, "PyCryptodome - Cryptographic library
for Python," 9 February 2021. [Online]. Available:
https://pypi.org/project/pycryptodome/. [Accessed
4 April 2021].

