
SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

141
Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2021-141-145

Ivan Radosavljević*,
Mladen Vidović,
Nebojša Nešić

Singidunum University,
Belgrade, Serbia

Correspondence:
Ivan Radosavljević

e-mail:
iradosavljevic@singidunum.ac.rs

MICRORAPTOR GUI - A LIGHTWEIGHT REMOTE RENDERING
PROCESS MONITORING SOFTWARE

Abstract:
The rendering of a large number of images is a demanding task, usually delegated
to remote rendering farms. This necessitates the creation of software for the
management of these remote rendering tasks. Several commercial and non-
commercial solutions can be used for this task. However, they are not specialized
for rendering, and thus require either additional configuration and expansion,
or familiarity with the remote rendering machines and the manual setup of
rendering tasks. In this paper we present a solution to alleviate this issue. The
solution consists of two components: Microraptor GUI and Microraptor client.
Microraptor GUI is a lightweight web-based task monitoring and manipulation
panel. Its backend is implemented in Python using the Flask framework and the
frontend is implemented using the Angular framework. Microraptor client is a
Blender plugin that allows for the direct access to rendering processes.

Keywords:
Remote rendering, Remote control software, Distributed rendering.

INTRODUCTION

Rendering a large number of images can be a computation-heavy
task, especially in the case of photorealistic, high-resolution images. Thus,
these tasks are usually performed on dedicated hardware or clusters of
dedicated hardware, often called render farms. Such hardware is usually
placed in rooms specially designed to house it, protected from moisture
and with efficient cooling systems as it is often required to operate under
high load for long periods of time. This makes the hardware inaccessible
to its end users without specialized software tools for remote access. The
most utilized solution for this is the use of a Secure Shell (SSH) client. As
these clients often provide only a command line interface, they require
the users to be sufficiently proficient and familiar with terminal syntax
and commands available on the system they are accessing. The command
line interface also limits the use cases for such applications, as they do not
provide means to visually inspect rendered images or track the rendering
progress and hardware load without the use of specially written scripts
that output that information to the console.

INFORMATION SECUITY AND ADVANCED ENGINEEING SYSTEMS SESSION

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Information Secuity and Advanced Engineeing Systems Session

142

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Another solution is the utilization of screen sharing
and remote control software. This includes commercial
solutions such as TeamViewer [1] or AnyDesk [2], as
well as open-source software such as Apache Guacamole
[3] and Remmina [4]. These tools function by streaming
the screen of a host machine to a client, as well as sending
commands from the client to the host.

This allows users to access the desktop of a remote
machine and manipulate it through a GUI as they would
a local machine. Although easier to an end user, this
process is more resource demanding than plain SSH
access. These tools are meant as a general-purpose
remote access solution, mostly for technical support. As
such, they are not specialized for the monitoring and
control of rendering tasks. Web-based tools for remote
system administration such as cPanel [5] and Webmin
[6] provide a more specialized environment with tools
for remote system configuration. These solutions pro-
vide tools to track system load, start, end and monitor
processes, access and manipulate the host file system
through a web client. As these tools are often operating
system agnostic, the end user does not need to be familiar
with the remote machine’s system, only with the tool
they are using. However, these solutions do not provide
native tools specialized for the manipulation of rendering
processes.

In this paper, we present Microraptor GUI, a dis-
tributed remote rendering process monitoring software
with a web-based GUI. In the second chapter, we pro-
vide an overview of related work. In III, the software
architecture is presented. The fourth chapter contains
a discussion of implementation details. In V, we dem-
onstrate our solution using a simple use case scenario.
Finally, in VI, we conclude with an overview of the
implemented solution, and a discussion of possible fu-
ture improvements.

2. RELATED WORK

In [7], the authors present a solution for a grid-based
rendering farm based on Condor, an open-source high
throughput computing software framework. A configu-
ration file, containing rendering parameters is passed to
the Condor software via a command line interface. The
authors note that a major drawback of this approach is
the difficulty of manually writing the configuration files
and deploying them to the grid. In a follow-up paper [8],
the authors attempt to solve that issue by implementing
a GUI for the generation of the aforementioned script
files.

The created interface also allows for the tracking of
currently running jobs. Checkpoints for individual jobs
are not supported. Hence, if a job fails during rendering,
the entire job must be restarted. Due to this deficiency,
the authors suggest the creation of smaller individual
jobs.

In [9], the authors present a collaborative animation
rendering system in order to speed up the rendering of
digital animated videos created by undergraduate art
students. However, the system provided only a com-
mand line interface for the remote control and moni-
toring of tasks.

As such, it required its users to be familiar with clus-
ter computing and Linux terminal commands, which
presented a barrier for most students. In order to in-
crease the usability of the rendering system, the authors
expanded upon their work in [10] by creating a simpler
GUI in the form of a web portal. The portal supports
user registration and authentication. Users can upload
Blender files which contain the 3D animations to be ren-
dered and submit rendering jobs. An overview of previ-
ously submitted and currently running jobs, as well as
a preview of rendered videos are also provided. The in-
terface lacks advanced output settings, allowing only for
the generation of a single video from a Blender file. This
is due to the GUI being designed for a narrow use case.

3. SOFTWARE ARCHITECTURE

Our proposed solution is a distributed rendering system.
A central node is utilized as an access point for end users,
which can be used to assign new tasks and monitor run-
ning tasks. Tasks are distributed to Microraptor clients
which are installed on individual rendering nodes. Each
rendering node executes a single rendering task and
returns metadata associated with the task, and the URLs
of the render output files. The metadata contains the
rendering node’s hardware load, which includes CPU,
GPU and RAM load, global rendering parameters, as
well as the progress of the currently running rendering
task. Figure 1 shows the data flow and main components
of the Microraptor GUI rendering system.

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Information Secuity and Advanced Engineeing Systems Session

143

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Figure 1 - Architecture overview

Figure 2 shows the class diagram of our proposed
solution. Each user can create an arbitrary number of
tasks, by assigning them a title, start and end frames if
the rendering task in question is an animation, and a
priority, the value of which will determine the task’s po-
sition in an execution queue. For each rendering output
of a task, a task result is generated that contains the URL
of the output file, the date of task termination, as well
as a status message. Additionally, each task result may
contain an arbitrary number of TaskResultMetadata
objects. These objects contain key-value pairs, allowing
for a flexible definition of a task result’s metadata.

Figure 2 - Class diagram of the Microraptor GUI
application

A sequence diagram illustrating a typical use case is
shown in Fig 3. A logged in user creates a task by
accessing Microraptor GUI. The user is then notified
about the successful creation of the task. Once the user
commences task execution, the task is deployed to a
Microraptor client for rendering. Upon deployment of
the task, the Microraptor client confirms the task deployment
to the Microraptor GUI, which then informs the user
that the task was successfully deployed. While the task
is being executed, task results are sent from the Microraptor
client to Microraptor GUI and accumulated there. The
user can request a status update of the task being
executed, upon which all the accumulated task results
are returned to the user by the Microraptor GUI.

Figure 3 - Sequence diagram of a typical usecase

4. IMPLEMENTATION DETAILS

The backend of Microraptor GUI is implemented as
a web application in the Python programming language,
using Flask, a lightweight WSGI framework [11]. The
frontend of the application is implemented using the
Angular framework [12] and the Angular Material UI
component library [13]. Apache CouchDB [14] is used
to store the task results received from the clients.

The Microraptor client is implemented in Python as a
Blender plugin. This approach allowed us to directly access
the rendering process and extract data such as the current
frame being rendered, estimated render time and render
result. The Python os and psutil libraries were used to extract
system information such as CPU, RAM and GPU load.

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Information Secuity and Advanced Engineeing Systems Session

144

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

The communication between the Microraptor GUI
and the Microraptor client is realized by using the
ZeroMQ [15] library.

Figure 4 shows the task overview panel of the
Microraptor GUI. It contains a form for adding a new
task, and a table displaying previously added tasks. For
each task, the user can view its current status, request
additional details, deploy it, terminate current deployment
or restart a completed task.

Figure 4 - Tasks overview panel

Figure 5 shows the task details overview for a single
task. On this page, the user is presented with the name of
the current scene being rendered, the name of the node
it is rendered on, current rendering progress and aver-
age rendering time per frame. This page also contains
information about the hardware load of the node. Each
rendered frame is displayed in a table and can be viewed
independently.

Figure 5 - Task details panel

Figure 6 is the preview of an individual frame. It contains
the start and end time, and duration of the rendering
process, as well as metadata associated with the frame,
and an image preview.

Figure 6 - Frame details panel

5. CONCLUSION

In this paper we showed a solution for monitoring
and controlling a remote rendering process using a
lightweight distributed web-based software. The soft-
ware consists of two distinct components: Microraptor
GUI, an end user access point for the software, and
Microraptor client, a Blender plugin that enables direct
access to the rendering process. The solution allows for
the management of rendering tasks using a GUI, thus
eliminating the need for familiarity with the rendering
node’s system and command line tools. The proposed
solution can be expanded upon in order to facilitate the
deployment of tasks other than the rendering of a scene.
Another direction for improvement would be to update
task results on the Microraptor GUI immediately upon
a change on the client, without the end user needing to
explicitly request updates.

Sinteza 2021
submit your manuscript | sinteza.singidunum.ac.rs

Information Secuity and Advanced Engineeing Systems Session

145

SINTEZA 2021
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

REFERENCES

[1] 	 "TeamViewer - The Remote Connectivity Software,"
6 2021. [Online]. Available: https://www.teamview-
er.com/en/.

[2] 	 "AnyDesk," 6 2021. [Online]. Available: https://
anydesk.com/en.

[3] 	 “Apache Guacamole™,” 6 2021. [Online]. Available:
https://guacamole.apache.org/.

[4] 	 “Remote desktop client with RDP, SSH, SPICE, and
VNC protocol support. - Remmina,” 6 2021.
[Online]. Available: https://remmina.org/.

[5] 	 "cPanel," 6 2021. [Online]. Available: https://cpanel.net/.
[6] 	 “Webmin,” 6 2021. [Online]. Available: https://

www.webmin.com/.
[7] 	 Z. Patoli, M. Gkion, A. Al-Barakati, W. Zhang, P.

Newbury and M. White, How to Build an Open
Source Render Farm Based on Desktop Grid Com-
puting, 2008, pp. 268-278.

[8] 	 M. Z. Patoli, M. Gkion, A. Al-Barakati, W. Zhang, P.
Newbury and M. White, An open source Grid based
render farm for Blender 3D, 2009.

[9] 	 T. Boettcher and N. Wolf, "DSABR : Di stributed
System for Automated Blender Rendering," 5 2013.

[10] 	 J. Rankin, T. Boettcher and P. Bui, A Web Portal For
An Animation Render Farm.

[11] 	 “Welcome to Flask – Flask Documentation (2.0.x),”
6 2021. [Online]. Available: https://flask.palletspro-
jects.com/en/2.0.x/.

[12] 	 “Angular,” 6 2021. [Online]. Available: https://
angular.io/.

[13] 	 A. Material, "Angular Material," 6 2021. [Online].
Available: https://material.angular.io/.

[14] 	 “Apache CouchDB,” 6 2021. [Online]. Available:
https://couchdb.apache.org/.

[15] 	 “ZeroMQ,” [Online]. Available: https://zeromq.org/.

