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Abstract: 
The RSA cryptographic algorithm is widely used in data protection and 
electronic business. One of the most important parameter of the achieved 
level of security is the quality of the generated cryptographic keys with which 
the algorithm is applied. In this paper a few cases in which poorly generated 
RSA cryptographic keys caused dis-accreditation of the system are described. 
The recommendations and checks that must be fulfilled during generation 
of RSA algorithm cryptographic keys are formulated in order that keys were 
considered safe for implement on.
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1. INTRODUCTION

Th e level of data protection achieved by the application of crypto-
graphic algorithm in data protection mostly depends, on the quality of 
the cryptographic algorithm and the quality of the applied cryptographic 
key. Th e signifi cance and role of the applied cryptographic algorithm is 
indisputable and clear. Th e role and signifi cance of the applied crypto-
graphic key is oft en overlooked. In the case of using the RSA crypto-
graphic algorithm, we will show the role and signifi cance of the quality 
of the applied cryptographic key to the security of data that are protected.

Th e cryptographic algorithm RSA, [1], is one of the cryptographic cor-
nerstones of protection in information systems and e-commerce. It belongs 
to the class of computationally secure cryptographic algorithms based on 
the complexity of the problem of factorization of natural numbers.

Th e RSA algorithm is defi ned by natural numbers , , ,n p q e  and d  
which meet the following requirements:

 ◆  n p q= ⋅ where ,p q  are prime numbers

 ◆ e  and d meet the following requirements

( ) ( )
( )( )

, ( ) 1, 1 mod ( ) ,

( ) 1 1 ,

gcd e n ed n

n p q

ϕ ϕ

ϕ

= =

= − −
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Wherein ( )nϕ  is Euler’s function, ( ),gcd a b  is 
the greatest common divisor of a, b, and moda n  is 
remainder of the division of the number a by n. Th en 

( ),ek n e=  is the encryption key and it is called the pub-
lic key. Decryption key is ( ),dk n d= and it is called a 
secret key.

Messages m  are represented by numbers from the 
interval 0 m n≤ <  and their enciphered form c is ob-
tained as

( ) mod
e

e
kc E m m n= =       (1)

Decryption takes place as follows

( ) mod
d

d
kD c c n m= =       (2)

Th e RSA algorithm belongs to the class of computa-
tionally secure cryptographic algorithms, which means 
that its parameters must have appropriate characteris-
tics so that messages protected by this algorithm have 
the desired level of security. Th e RSA algorithm’s se-
curity rests on ignorance of effi  cient ways to factorize 
large natural numbers, and in order to achieve security 
in practical terms its parameters must have appropriate 
characteristics. Bearing in mind that in order to achieve 
a minimum security level, when applying the RSA algo-
rithm, it is required that the length of parameters p and 
q, marked with p  and q , respectively, 1024p q= =  
bits and 2048n =  bits.

Th e cryptographic algorithm RSA is most oft en used to 
create an electronic signature and an electronic envelope.

From the point of view of the safety of the generic 
RSA algorithm, the primary role is played by attacks 
that reconstruct the secret key ( ),n d . In this context; 
attacks can be grouped according to the methods used 
to achieve this goal:

 ◆ Algorithms for factorization of the RSA algo-
rithm module

 ◆ Characteristics of the applied public and secret key
 ◆ Properties induced by the method of implement-

ing the RSA algorithm
Details can be founded in [2], [3], [4], [5], [6].

2. IMPACT OF CRYPTOGRAPHIC KEYS

Th e importance of cryptographic keys for safe use of 
cryptographic algorithms was detected at the end of the 

nineteenth century and formulated as the Kerckhoff ’s 
principle. According to Kerckhoff ’s principle, [7] the 
security of each cryptographic system rests with a good 
cryptographic algorithm on the assumption that its keys 
are generated in a random way and are unknown to the 
opponent. Th e following examples illustrate what can 
happen in data protection systems when this principle 
is not respected.

Non random values from certifi ed true random num-
ber generator

Th e fi rst example concerns the system for access to 
electronic state and commercial services in Taiwan, the 
analysis presented in [8].

Each user has a smart card called the “Citizen Digital 
Certifi cate card” with his electronic certifi cate issued by 
the appropriate accredited certifi cation body and which 
is used for identifi cation, authentication and authori-
zation when using electronic services. As an algorithm 
for creating an electronic signature, the RSA is used and 
its keys are generated on a smart card with a built-in 
random number generator that has a FIPS 140-2 cer-
tifi cate level 2. In [8], the authors analyzed the quality 
of the generated modules, number n  in the description 
of the RSA algorithm, on a sample of two million is-
sued electronic certifi cates. Module size in the analyzed 
cases is 1024 bits. Th e authors said that in a given sam-
ple they successfully factored 184 modules. A number 
of modules, 103 of them, are factorized due to the fact 
that some of them had a common prime factor, and the 
remaining detection of repetition forms that occur when 
generating prime numbers in this system.

Th e two most common factors detected in the analy-
sis are given in the following equations.

0000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000000000002 9

p c

f

=

   

(3)

q = c9242492249292499249492449242492
24929249924949244924249224929249
92494924492424922492924992494924
492424922492924992494924492424e5

    (4)

Th e factor (3) indicated by p appears forty-six times, 
and the factor (4) indicated by q appears seven times in 
the one hundred and three cases.
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Th e presented results of the conducted analysis in-
dicate the possibility of identity theft  and phishing in 
electronic commerce. A rough estimate is that in the 
analyzed system, one identity can be stolen on every ten 
thousand issued electronic identities, which is not at all 
harmless and incomparably greater than the probability 
that the theory recognizes as a danger in the case of good 
random generators. Similar analyzes for other environ-
ments and their results are given in papers [9], [10].

Th ese results indicate that the probable cause of the 
problem is the generator of random numbers on the 
smart cards as the theoretical analysis shows that the 
probability of the event is negligible. Namely, probabil-
ity that two randomly generated modules 1 2,n n  of the 
RSA algorithm have a common factor, ( )1 2, 1gcd n n ≠  
provided that it is ,n pq p q k= = =  , is approximately 
equal

 
( )( ) ( )

( )1 2

1
, 1 0

2 2k

k k
P gcd n n when k

k
−

≠ ≈ → →∞
−

 (5)

On the other hand, the appearance of the bit pattern 
in the generated prime numbers, the numbers p and q, 
points to the possible multiple use of the random se-
quence generated for prime number candidates.

Non random prime number generation from pseudor-
aandom number generator

In the paper [11], the authors analyzed the statisti-
cal properties of the RSA algorithm key generated by 
various soft ware libraries for this purpose. Th e result of 
their analysis showed that it is possible to detect with 
high probability the library by which the sample of RSA 
public keys is generated. Th at analysis showed that the 
keys generated by the Infi neon RSA Library version 
v1.02.013 have signifi cant deviation from the uniform 
distribution for events ( )modp x  and ( )modn x  when 
x is a small prime number. Th is result was intrigued by 
another group of researchers who came up with the idea 
of trying to factor RSA keys obtained in this way.

In the fi rst step they found that all the prime num-
bers generated by this library have a form

( )65537 modap k M M= ⋅ +      (6)

Wherein M is a product of the fi rst N prime num-
bers, i.e. 

1

2 3
N

i N
i

M P P
=

= = ⋅ ⋅ ⋅∏ 
 

and k, a are unknown random numbers. So,
 

( )( ) ( )( )65537 mod 65537 moda bn k M M l M M= ⋅ + ⋅ ⋅ +    (8)

Coppersmith method, [12], is used for factoriza-
tion. Th e method can be used for factoring RSA mod-
ules when one number of the high bits of one factor is 
known, [11].

In this case, the idea is as following.
Denote the order of the element 65537 in the group 

*
MZ  by (65537)ord .

Since the system is designed for factorization of the 
modules in the form (8), the fi rst step is to determine 
are the modules of desired shape. Th is is achieved by the 
following analysis

 
( )( ) ( )( )65537 mod 65537 mod

65537 mod 65537 mod

a b

a b c

n k M M l M M

M M+

= ⋅ + ⋅ ⋅ + =

= =
 (9)

So, n is good candidate if there is c such that it is 
65537 modcn M=

Th en for each number (65537)a ord≤ using the 
Coppersmith’s algorithm obtains number k and checks 
if the obtained number is a factor of n. If answer is yes, n 
is factorized, /q n p=  but if it is not the next a is chosen.

Using this algorithm, the RSA keys obtained by In-
fi neon RSA Library version v1.02.013, it is possible to 
factorize effi  ciently modules of lengths 512 and 1024 
bits, and special cases of keys 2048 and 4096 bits long.

Details and more effi  cient algorithms can be found 
in the [11].

Special properties of the prime numbers usage

In this case, we will consider one feature of RSA al-
gorithm.

We call the message m fi xed point relative to the RSA 
algorithm with parameters , , ,n p q e  and d  if it is satis-
fi ed that

modem m n=      (10)

i.e. encryption does not change message. For each se-
lection of parameters , , ,n p q e  and d  there are fi xed 

(7)
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point messages but their number varies depending on 
the selected  p, q and e. Th is can be a problem when 
implementing a digital envelope system

Digital envelope is a key distribution technique for 
symmetric cryptographic algorithms in which the data 
are encrypted by symmetric cryptographic algorithm, 
for example AES, and the key used is encrypted by the 
RSA algorithm public key of the recipient. Both cipher 
texts are sent to the recipient and he fi rst decrypts the 
key with the secret RSA key and the RSA algorithm, then 
decrypts the received message with the AES algorithm.

For RSA algorithm with parameters , , ,n p q e  and d  
the number of fi xed point messages, NP, is given by the 
term

 
( ) ( )( )( ) ( ) ( )( )( )1 , 1 1 1 , 1 1NP gcd e p gcd e q= − − + ⋅ − − +  (11)

Th is results in the one who implements the system 
and controls the procedures for generating keys for the 
RSA algorithm can control the number of fi xed point 
messages and thus compromise the system, for example 
according to [13], by stating that the generated param-
eters satisfy the following relations:

 ◆
{ }max ,

1 1 1 1 12 1, 2 1, 2 1,m nm np p q q e p q p= + = + = +  
and are prime numbers, then all the messages are 
fi xed point messages.

 ◆
{ }min ,

1 1 1 1 12 1, 2 1, 2 1,m nm np p q q e p q p= + = + = +  
and 1q  are prime numbers, then randomly se-
lected message is fi xed point message with  prob-
ability approximately  1/ 2 m n−  

Controlling the size of the numbers m and n the at-
tacker can adjust the security of the system with its at-
tacking capabilities.

If one uses a digital envelope technique by combin-
ing, for example, a 256-bit AES algorithm and RSA al-
gorithm with a 2048-bit key, its security would, at fi rst 
glance, be respectable. However, if the parameters for 
RSA generated as in the previous examples, it would 
practically not be protected.

In case of the parameters , ,p q e  are randomly cho-
sen, the probability that the randomly selected message 
is fi xed point message is approximately ( )3ln /n n  which 
is negligible considering the size of the number n .

3. GENERATING RSA KEY

In part I the RSA algorithm defi nition is given. As 
we mentioned in introduction the RSA algorithm’s 

security rests on the fact that there is no effi  cient ways to 
factorize large natural numbers, and in order to achieve 
security in practical terms its parameters must have ap-
propriate size. So, selection of parameters must ensure 
that the modulus of specifi c RSA algorithm has a size 
that prevents effi  cient factoring.

Module size n p q= ⋅  satisfi es 1p q n p q+ − ≤ ≤ + .
Have a security parameter k given, and k p q= =  

then the number 2k represents the level of security of 
the RSA algorithm.

Practical algorithms for generating RSA keys and 
their consequences

Having in mind the description given in I parameters 
,p q  are randomly selected from a set of prime numbers. 

Th is choice is most oft en carried out in three steps:
1. A random number of length k is generated using 

a random number generator 
2. Check its length (zeroes which are not signifi cant 

digits are not counted) which must be k.
3. Check that the generated number is prime number.
Each of these steps takes some time.
If a good random generator is used to be a random 

choice of k bits get the number of length k is 1/ 2

Th e probability of randomly selected number from 
the interval ( )1,2k  is prime number is about ( )1/ ln 2k
. Th erefore, the likelihood that the number whose rep-
resentation makes randomly selected k bits has a length 
k and it’s prime number is ( )1/ 2 ln 2k  what in the case 
when it is 1024k =  roughly speaking means more than 
a thousand and four hundred attempts to make one 
successful. What further aggravates the situation is the 
fact that deterministic algorithms to determine if the 
number is prime takes long time, and, in the previous 
example, this type of check will occur with more than 
one thousand and  four candidates.

Such a purely theoretical approach is ineffi  cient for 
mass application, and in practice, various modifi cations 
are used to increase effi  ciency.

If with 0 1 2 1k kb b b b− −  denote the generated random 
bits, 0 1, kb b −  to be the smallest and greatest weight re-
spectively, the usual modifi cations are:

1. Set 0 1 1kb b −= =  and bits 1 2, , kb b −  are generated 
randomly. Th is eliminates the generation of can-
didates who do not have length ( )1 0kk b − =  and 
which are certainly not prime ( )0 0b =



Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Intelligent Signal Processing

593

SINTEZA 2019 
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

2. It is known that the product is two k bit num-
bers can have a length 2k  or 2 1k − . To reduce 
the chances of selecting numbers ,p q  which 
give the RSA modulo length 2 1k −  in the prod-
uct an analysis is performed showing the num-
bers ,p q  should be selected from the interval 

12 2 ,2 1 .k k− ⋅ −   A more effi  cient approach, 
which induces a non-signifi cant reduction in en-
tropy, is by putting 0 2 1 1.k kb b b− −= = =  

Items 1. and 2. do not distort the randomness of 
the selection because the selection process is such that 
candidates who do not meet the requirements of those 
items were certainly rejected.

Th erefore, the basic, potential source of problems 
with RSA keys originates from generating random se-
quences on two grounds:

 ◆ Th e quality of the random generator
 ◆ How to use generated random sequences in the 

process of generating RSA keys.
In part II, we saw examples of both situations.

Instructions for generating RSA keys

In accordance with the previous one, regarding the 
level of security that RSA off ers, the fi rst factor in or-
der is the quality and length of the generated keys. We 
have seen in that some of the properties of the generated 
elements can be such as to dis-accredit the system in 
which they are used. In order to avoid such situations 
in the process of generating keys for the RSA algorithm, 
a standard representation, it is necessary to adhere to 
certain rules: 

1. Th e random number generator generating can-
didates for prime numbers must be thoroughly 
tested and reliable. Sequences representing can-
didates must be selected independently.

2. Every prime number p  length k  can be used up 
to a maximum of once.

3. For every prime number p length k  numbers 
1p ±  they must have at least one large prime factor

4. For prime numbers ,p q  it must be valid 
0.25p q n− ≥ , [14]

5. For the secret key ( ),n d  it must be valid 0.292d n≥
, [15].

Th e above-mentioned rules are technically more 
detailed in international standards. Recommendations 
related to random and pseudo- random generators can 
be found in [16], [17] and [18].

Recommendations on the method of forming can-
didates for random numbers, checks of their proper-
ties and recommended algorithms for this purpose are 
given in [19], [20] and [21]. Th ese recommendations 
deal with requests related to items with item numbers 
3, 4, and 5. Item number 2 is not recorded as neces-
sary due to the insignifi cant probability of occurrence in 
ideal conditions. As shown in practice, [8], [10], [9] and 
[12], that this property can be the cause of signifi cant 
security weaknesses in some situations. Th e authors of 
the [8] root of this unexpected behavior attributed the 
inadequate entropy of the applied sources of random-
ness, although the causes could be covered in the way of 
implementing the defi ned recommendations.

4. CONCLUSION

Although by its description and mathematical basics, 
the RSA algorithm does not require deep mathematical 
knowledge, it represents one of the cornerstones of se-
curity in the computer and networking world. Despite 
its simplicity, it is not easy to implement it reliably. Th e 
previous presentation shows the potential weaknesses 
of the RSA algorithm keys that lead to system discredi-
tation. Th e theory shows that in the case of randomly 
generating parameters the probability of occurrence of 
some of these characteristics is negligible, but practice, 
[8], [12] shows that even in seemingly verifi ed situations 
this does not have to be the case.

In addition to the previous choice of parameters, the 
security of the systems in which the RSA algorithm is 
applied is signifi cantly infl uenced by the way in which 
it is implemented and interaction with the rest of the 
system. Th is can be seen more in [2], [4] and [6].
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