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Abstract: 
In recent years, computer vision which is one of the fastest growing artificial 
intelligence disciplines, has become increasingly important in our society 
due to its wide range applications in different areas such as health care and 
medicine (algorithms that can diagnose medical images for diseases), vision-
based robotics, self-driving cars (that can see and drive safely). Convolutional 
neural networks are biologically inspired architectures and represent the core 
of deep learning algorithms in computer vision. In this paper, we represent 
the fundamental building blocks of convolutional neural networks and the 
most popular convolutional neural network architectures in the history, 
including those that have achieved the state-of-the-art performance on 
standard recognition datasets and tasks such as ImageNet Large-Scale Visual 
Recognition Challenge (ILSVRC). ILSVRC is one of the largest challenges 
in computer vision organized by Stanford Vision Lab since 2010 and every 
year teams compete to claim the state-of-the-art performance on the dataset.
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1. INTRODUCTION

Convolutional neural networks [1] (CNNs) are a specifi c type of ar-
tifi cial neural networks (ANNs), that has been demonstrated high per-
formance on various visual tasks, including image classifi cation, image 
segmentation [2], image retrieval [3], object detection [4], image caption-
ing [5], face recognition [6], pose estimation [7], traffi  c sign recognition 
[8], speech processing [9], neural style transfer [10] etc.

Convolutional neural networks have become a rapidly growing area 
of interest in recent years, however, its development started much ear-
lier. One of the most infl uential papers in this area was published by 
Hubel and Wiesel in 1959 [11]. Th ey did a series of experiments, trying 
to understand how neurons work in the visual cortex. Th e researchers 
discovered that the visual cortex has a hierarchical organization, that 
there are simple and complex neurons in the primary visual cortex and 
that visual processing always starts with simple structures such as ori-
ented edges, complex cells received input from lower level simple cells by 
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way of a receptive fi eld. In 1980, Fukushima introduced 
Neocognitron [12], which was the fi rst example of an 
artifi cial neural network model, that had an idea of sim-
ple and complex cells, discovered by Hubel and Wiesel. 
Fukushima put “S-cells” and “C-cells” into alternative 
layers, building up into a hierarchy, so-called “sandwich 
layers” (SCSCS…). S and C cells show similar character-
istics to simple and complex cells in the visual cortex. “S-
cells” has modifi able parameters and on the top of them, 
“C-cells” perform pooling. Th e network was not back-
propagated at that time. LeCun in 1989 applied back-
propagation [13] to train Fukushima’s artifi cial neural 
network, the method has a 1% error rate and about 9% 
reject rate on zip code digits. In 1998, LuCun further 
optimized CNN using an error gradient-based learning 
algorithm [1]. In 2012 is proposed AlexNet [14], which 
has a more complex architecture, it was the fi rst deep 
convolutional neural network (DCNN). AlexNet [14] 
achieved signifi cant results and this success has brought 
about a revolution in computer vision. Th e signifi cant 
results came from the effi  cient use of GPUs, ReLU [15] 
activation function, regularization technique called 
dropout [16] and data augmentation. 

CNNs are designed to process data that come in the 
form of multiple arrays, for example, a color image com-
posed of three 2D arrays containing pixel intensities in 
the three-color channels. Th ey use their convolutional 
fi lters to extract information from images, earlier lay-
ers detect edges, later layers can detect part of objects, 
then even later layers may detect complete objects, such 
as faces, or other complex geometrical shapes [17]. Th e 
CNN composed by a set of layers that can be grouped by 
their functionalities, three main types of layers are: con-
volutional layer, pooling layer, and fully-connected layer.

2. CONVOLUTIONAL NEURAL NETWORK 
LAYERS

Convolutional layer

Th e convolution operation is one of the fundamen-
tal building blocks of a convolutional neural network. 
Th e convolutional layer’s parameters consist of a set of 
learnable fi lters (kernels). Every fi lter is small spatially 
(along width and height), but extends through the full 
depth of the input volume. Typical fi lter sizes might 
have size 3x3, 5x5, 7x7. Th e third dimension of the fi lter 
corresponds to the number of channels in the input. Th e 
grayscale image depth is 1 and the color image has 3 
(RGB) color channels.

Fig. 1. One convolution layer [18]

During the forward propagation, each fi lter performs 
convolution on the input volume across the width and 
height and compute the dot products between the en-
tries of the fi lter and the input at any position, this op-
eration is followed by a nonlinear activation function 
(sigmoid, tanh, ReLU etc.), the resulting outputs are 
called feature maps. Th e feature map (also known as an 
activation map), gives the responses of the fi lter at every 
spatial position. An example of convolution layer fol-
lowed by nonlinear activation is shown in Fig. 1. We 
stack these activation maps along the depth dimension 
and produce the output volume. Th e output volume 
depends on three hyperparameters:  depth, stride and 
padding.

 ◆ Th e depth of the output volume represents the 
number of fi lters that are used in the convolution 
operation. Each fi lter is learning something dif-
ferent in the input, edges, blobs, colors.

 ◆ Th e stride is the number of steps that we slide 
the fi lter in the input. When the stride is 1 then 
we move the fi lters one pixel at a time. When 
the stride is 2 then the fi lters jump 2 pixels at a 
time as we slide them around. Th is will produce 
smaller output volumes spatially.

 ◆ Padding allows controlling the output size. Ap-
plying convolution to an input, reduce the out-
put size that leads to losing information. To avoid 
that, we pad the input volume with zeros around 
the border. Two common choices are valid con-
volution and the same convolution. Th e valid 
convolution means no padding, the same con-
volution means that the output size remains the 
same as the input size.

Th e output size is calculated in the following way: 

(n + 2p – f) / s + 1

Where n is the number of fi lters, p is the amount of 
padding, f is the fi lter size and s is the stride.



Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Data Science & Digital Broadcasting Systems

447

SINTEZA 2019 
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Pooling layer

CNNs oft en use pooling layer operation aft er con-
volution layers, its function is to reduce the dimension, 
also referred as subsampling or downsampling. Hyper-
parameters of pooling layer represent the fi lter size and 
strides. Most commonly used pooling layer is with fi lter 
size 2 and with stride 2. Two common types of pooling 
layers are max pooling and average pooling, where the 
maximum and average value is taken, respectively. Max 
pooling is used oft en than average pooling. Pooling layer 
does not have parameters to learn. Th e intuition of what 
max pooling is doing is that the large number means that 
there may be detected a feature. An example of convolu-
tion layer followed by pooling layer is shown in Fig. 2.

Fig. 2. Convolution layer followed by pooling layer [18]

Fully Connected layer

Aft er several convolution and pooling layers, the 
CNN generally ends with several fully connected lay-
ers. Th e tensor that we have at the output of these layers 
is transformed into a vector and then we add several 
neural network layers. Th e fully connected layers typi-
cally are the last few layers of the architecture as shown 
in the Fig. 3, the dropout [16] regularization technique 
can be applied in the fully connected layers to prevent 
overfi tting. Th e fi nal fully connected layer in the archi-
tecture contains the same amount of output neurons as 
the number of classes to be recognized.

Fig. 3. Two convolutional layers followed 
by a fully connected layer [18]

3. CLASSIC CONVOLUTIONAL NEURAL 
NETWORK ARCHITECTURES

We have so far described diff erent layers of CNN. 
Now, we present how these layers are combined to 
form the architecture of the network. Th e most com-
mon CNN architectures stack a few convolutional layers 
together, it follows the pooling layer, then this pattern 
repeats, and we add at the end the fully connected layers. 
Classic CNN architectures are LeNet-5 [1], AlexNet [14] 
and VGGNet [19].

LeNet-5

Th e LeNet-5 [1] was the fi rst CNN, it proposed by 
Yann LeCun and his team at Bell Labs in 1998, this ar-
chitecture is shown in Fig. 4. Th is network was devoted 
to digit recognition, LeCun et.al. used the system for 
handwritten signature detection in checks, and it was 
successfully deployed commercially for this purpose. It 
is composed only on few layers and few fi lters, due to 
the computer limitations at that time. As shown in Fig. 
4, the architecture has two convolution layers, two av-
erage pooling layers, two fully connected layers and an 
output layer with Gaussian connection.  LeNet-5 [1] has 
60,000 parameters. As activation function, tanh activa-
tion function is used.

Fig. 4. Architecture of LeNet-5  [1]

AlexNet

Th e AlexNet [14] architecture was the fi rst work that 
popularized Convolutional Networks in Computer Vi-
sion, it was the winner of the ImageNet ILSVRC [20] 
competition in 2012, it had a 15.4% top-5 error rate vs 
26.2% for the next lowest network. AlexNet [14] fol-
lows the pattern of the LeNet-5 [1] architecture, but it 
was deeper, bigger, and featured convolutional layers 
stacked on top of each other. Th e tanh activation func-
tion, that was used in LeNet-5 [1], replaced with ReLU 
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function, as loss function, cross entropy loss function 
is used. AlexNet [14] used a much bigger training set. 
LeNet-5 [1] was trained on the MNIST dataset with 
50,000 images and 10 categories, AlexNet [14] used a 
subset of the ImageNet dataset with a training set con-
taining one million color images and 1000 categories.

Th e input image resolution is 224 × 224, the architec-
ture consists of 5 convolution layers, three 2x2 max-pool-
ing layers and 2 fully connected layers. As shown in Fig. 
5, the fi lter size of the fi rst convolution layer is (11, 11, 3, 
96) with a stride of 4, and the fi rst output shape is (55, 55, 
96). As a regularization technique, dropout [16] is used in 
the fully connected layers to reduce overfi tting. Th e total 
number of parameters in AlexNet [14] is 60 million.

Fig. 5. AlexNet architecture  [14]

VGGNet

Th e VGG Network [19] is introduced in 2014 by Ka-
ren Simonyan and Andrew Zisserman. At that time, it 
was considered as a very deep network. Its main contri-
bution was in showing that the depth of the network is a 
critical component to achieve better recognition or clas-
sifi cation accuracy in CNNs. VGGNet [19] shown in Fig. 
6, used 3x3 fi lters, the authors give the intuition behind 
this that having two consecutive two 3x3 fi lters gives an 
eff ective receptive fi eld of 5x5, and three 3x3 fi lters give a 
receptive fi eld of 7x7 fi lters. Th e number of fi lters in the 
architecture double aft er every max-pooling operation.

Fig. 6. VGGNet architecture [19]

4. MODERN CONVOLUTIONAL NEURAL 
NETWORK ARCHITECTURES

Modern CNN architectures are GoogleNet [21], Re-
sidual Network [22], Squeeze-and-Excitation network 
[23]. Each of them is described in more details in the 
following section.

GoogleNet

Th e network that won ILSVRC [20] in 2014 is the 
network GoogleNet [21]. GoogleNet [21], shown in Fig. 
8, is considered to be the fi rst use of modern CNN ar-
chitecture, which is not composed only on successive 
convolution and pooling layers, it used inception [24] 
architecture, that is kind of network in network (NIN) 
[25]. An example is represented in Fig. 7. Th e inception 
module skips connections in the network essentially 
forming a mini-module and that module is repeated 
throughout the network. Th e inception module dramat-
ically reduced the number of parameters in the network, 
GoogleNet [21] employed around 7 million parameters, 
which represented a 9 times reduction with respect to 
its predecessor AlexNet [14], which used 60 million pa-
rameters. Furthermore, VGGNet [19] employed about 
3 times more parameters than AlexNet [14]. 

Fig. 7. Inception module [21]

Fig. 8. Inception module [21] 
GoogleNet architecture  [21]
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GoogleNet [21] uses 9 inception modules, and it 
eliminates all fully connected layers using average pool-
ing to go from 7x7x1024 to 1x1x1024, eliminating a 
large number of parameters that do not seem to matter 
much. As a form of data augmentation, multiple crops 
of the same image were created and the network was 
trained on it. Th ere are also several followup versions 
to the GoogleNet [21], most recently Inception-v4 [24].

Residual network

Residual network (ResNet) [22] was the winner of 
ILSVRC [20] 2015, it has in total of 152 layers. ResNet 
is built of a residual block, which is shown in Fig. 11, 
by stacking residual blocks together, each residual block 
has two 3x3 convolution layer, Periodically, double the 
number of fi lters and downsample spatially using stride 
2. ResNet [22] features special skip connections and 
use of batch normalization [26] aft er every convolution 
layer. Deeper models are harder to optimize, the solu-
tion is to use skip connection, which allows to take the 
activation from one layer and feed it to another layer. 
Using that enables to train very deep networks and 
avoid vanishing and exploding gradient problem. To 
reduce the number of parameters, the ResNets [22] do 
not have fully connected layers, besides fully connected 
layer to output the 1000 classes. ResNet [22] is the fi rst 
architecture that has better performance than human 
performance.

Fig. 9. Residual block [22]

Fig. 10. ResNet [22]

Squeeze-and-Excitation Network

Squeeze-and-Excitation Network (SENet) [23] won 
the fi rst place on ImageNet challenge in 2017 and sig-
nifi cantly reduced the top-5 error to 2.251%. SENet 
introduce a building block for CNNs that improves 
channel interdependencies at a minimal additional 
computational cost. Besides signifi cant improvements 
in performance, it can be easily added to an existing 
architecture. Th e SE block tries to use global informa-
tion to selectively emphasize informative features and 
suppress less useful once by adding parameters to each 
channel of a convolutional block so that the network can 
adaptively adjust the weighting of each feature map. SE 
block consists of two operations, squeeze and excitation 
respectively. Squeeze-and-excitation block is shown in 
Fig. 13.

 ◆ Th e squeeze operation squeezes each channel to 
a single numeric value by using global average 
pooling to generate channel-wise statistic and 
reduce the dimension.  

 

Fig. 11. Squeeze-and-Excitation block [23]

Fig. 12. Th e schema of the original Residual module (left ) 
and the SEResNet module (right) [23]
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 ◆ Th e excitation operation makes use of the in-
formation aggregated in the squeeze operation, 
determines which of the feature maps are impor-
tant. Th is is done using a two FC layer around the 
ReLU non-linearity and in the end the as a gating 
mechanism, the sigmoid function is applied. Th e 
resulting weights applied to each feature maps to 
generate the output of the SE block which can 
be fed directly into subsequent layers of the net-
work.

5. CONCLUSION AND DISCUSSION

Th is paper has outlined the basic concepts of Con-
volutional Neural Networks, explaining the layers re-
quired to build it and detailing how to best structure the 
network in most image classifi cation tasks. CNN is bet-
ter than other deep learning methods in applications to 
computer vision, it gives the best performance in image 
recognition problems and even outperforms humans in 
certain cases. Th e inception module, along with residual 
networks, has improved CNN performance and intro-
duced new capabilities. Th e Inception module provides 
some scale invariance, while residual networks allow 
training deeper networks. Th e default choice of network 
architecture is ResNet or SENet. 
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