
SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

369

Michal Hucko,
Valentino Vranić*

Institute of Informatics, Information Systems
and Software Engineering,
Faculty of Informatics and Information
Technologies,
Slovak University of Technology in Bratislava,
Bratislava, Slovakia

Correspondence:
Valentino Vranić

e-mail:
vranic@stuba.sk

INCREASING UNIT TEST RESILIENCE BY DECREASING
POINTCUT FRAGILITY

SOFTWARE AND INFORMATION ENGINEERING & INTERNET AND DEVELOPMENT PERSPECTIVES

Abstract:
By operating at a very detailed level, unit tests are very susceptible to changes
in production code. Writing unit tests in aspect-oriented programming can
help with their maintainability. However, the existing approaches do not take
into account so-called pointcut fragility: a failure to address the intended join
points due to small changes in the base code. An approach to increasing unit
test resilience to changes in production code by decreasing pointcut fragility
is proposed in this paper. The approach is implemented in AspectJ with JUnit
used as a test oracle. The approach has been evaluated on several scenarios
encompassing typical code modification that render unusable the tests writ-
ten in a simple object-oriented way. The approach proposed in this paper
managed to make the test resilient to the most of the changes introduced by
these scenarios.

Keywords:
software testing, aspect-oriented programming, pointcut fragility, AspectJ, Java.

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2019-369-373

1. INTRODUCTION

Writing production code requires writing huge amounts of testing
code. In particular, this is true for so-called unit tests: the tests that ad-
dress the smallest testable parts. Test driven development practically re-
quires to cover the whole production code with unit tests.

By operating at a very detailed level, unit tests are very susceptible
to changes in production code. Even minor changes in production code
oft en make unit tests obsolete or even pointless.

Writing unit tests in aspect-oriented programming can help with their
maintainability. Aspect-oriented programming paradigm with its separa-
tion of crosscutting concerns suits well this purpose. Th e idea is that the
aspects can be used to throw runtime exceptions which can be handled
by the test oracles such as JUnit [1]–[3]. With aspect-oriented program-
ming, the tests are maintained completely outside of the production code,
being attached to it at the points they need to introspect, known as join
points. Th ese are specifi ed declaratively as sets of well-defi ned points in
program execution by constructs called pointcuts. However, the existing
approaches do not take into account so-called pointcut fragility: a failure
to address the intended join points due to small changes in the base code.

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Software and Information Engineering &
Internet and Development Perspectives

370

SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

In this paper, we will look at the possibilities of in-
creasing unit test resilience to changes in production
code by decreasing pointcut fragility. For this, we will
use the AspectJ programming language, a widely known
embodiment of aspect-oriented programming based on
Java. Th e rest of the paper is structured as follows. Sec-
tion 2 explains pointcut fragility. Section 3 proposes an
approach to increasing unit test resilience to changes in
production code by decreasing pointcut fragility. Sec-
tion 4 presents the implementation, and Section 5 re-
sents the evaluation of the approach. Section 6 discusses
related work. Section 7 concludes the paper.

2. POINTCUT FRAGILITY AND TESTING

Consider this simple aspect written in AspectJ:

public aspect SampleAspect {
 around(Message msg):
 call(init Counter.countLetters(..)) && args(msg) {
 // Process message
 }

}

Even small changes to the code this aspect aff ects,
such as changing the return value type of the countLet-
ters() method, can make its pointcut fail to address
the corresponding join points. Th is pointcut breaks on
a small change: it’s fragile.

Koppen and Störzer identifi ed the following situa-
tions that cause fragile pointcuts in AspectJ to break [4]:

1. Renaming classes, fi elds, and methods
2. Moving a method or class, which invalidates

the pointcuts based oft en used lexical primitive
pointcuts within() and withincode()

3. Adding or removing classes, fi elds, and methods,
which results either in making pointcuts fail to
cover new elements or in making them target
what does not exist any more

Writing tests capable of dealing with dynamically
evolving systems is a challenge [5].

3. APPROACH

Here, the actual approach to increasing unit test re-
silience to changes in production code by decreasing
pointcut fragility is proposed. Th e approach assumes the
unit tests are written in AspectJ, while the production
code is written in Java.

Fig. 1. Th e classes being tested inherit from Testable

First of all, if we are able to identify all the classes
and methods that need to be tested and if we can pro-
vide them with good and stable structure and names as
we design them, we can overcome future problems with
fragile pointcuts. Of course, we can hardly predict all the
changes to come.

In most cases, we are simply faced with the code to
be tested without the possibility to redesign it to ease the
testing. Even under such circumstances, we can identify
the classes to be tested. We need a mechanism to put
all these classes under a common handle. One way of
doing this is to make the tested classes inherit from a
special common class. Th is is exactly what is being used
in the approach proposed in this paper. Th is common
supertype for all classes to be tested is named Testable.
Th e easiest way to ensure inheritance without having to
modify the production code is to use the declare parents
AspectJ inter-type declaration. Th anks to inheritance,
the testing aspect can refer to all these classes regardless
of their names and how they change over time. For Test-
able, an interface could have been used instead of a class,
which would spare the only possible extends relation-
ship at the classes to be tested. Pointcuts are established
around the Testable class as a common supertype with
a reasonable use of wildcards in signatures within the
pointcuts. Java refl ection is used to access necessary ob-
jects within advice bodies. All this accommodates future
changes in method signatures.

Th e actual tests are implemented as aspects. As with
all tests, the tests implemented as aspects signal unde-
sired situations. Th e signaling is implemented so that
the aspect that implements a test raises a dedicated
exception denoted as TestingException. Th is exception
is derived from the original Java Exception class and it
points to the place where its instance occurred.

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Software and Information Engineering &
Internet and Development Perspectives

371

SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Th e test oracle is running the code which is being
tested. Aft er the target pointcut has been reached, the
testing aspect-oriented code is executed. If this code
does not raise a TestingException, the test has passed.

4. IMPLEMENTATION

Consider the situation depicted in the upper part of
Figure 1. Th e MessageHandler class represents a mes-
sage handling unit which handles incoming messages
through its processMessage() method.

As is depicted in the lower part of Figure 1, both
of these classes should inherit from the Testable class,
which implements the class refl ection through the get-
Properties() method. Th is method returns a HashMap
of properties for a given instance.

As a test oracle, the implementation presented here uses
the JUnit framework. Each test calls some method of one of
the classes being tested and catches a TestingException. If
the exception occurs, the test is considered to have failed.

Consider these two unit tests:
1. Before adding a Messageobject to the Message-

Handler queue, the actual queue object must be
initialized

2. Th e messages with a specifi c value assigned are
not to be added to the queue within the process-
Message() method call

Th eir implementation could look like this:

public aspect MessageHandlerTestingAspect {

 protected boolean init = false;

 declare parents: MessageHandler || Message
 extends Testable;

 pointcut initReached(Testable mh): target(mh)
 && call(* *Handler.*init*(..));

pointcut addReachedHandler(Testable mh):
 target(mh) && call(* *Handler.*add*(..));

pointcut addReachedMessage(Testable msg):
 call(* *Handler.*add*(..)) && args(msg);

after(Testable mh): initReached(mh) {
 init = true;
}

 before(Testable mh) throws TestingException:
 addReachedHandler(mh) {
 if (!init) {
 TestingException ex =
 new TestingException(“Not Initialized”);

 ex.setSource(“Queue was not initialized.”);

 throw ex;
 }
 }

 void around(Testable msg) throws TestingException:
 addReachedMessage(msg) {
 Object value = null;

 try {
 value = msg.getProperties().get(“value”);
 } catch (IllegalArgumentException |
 IllegalAccessException e) {
 }

 if ((int) value != 2) {
 proceed(msg);
 } else {
 TestingException ex =
 new TestingException(“Not Initialized”);

 ex.setSource(
 “Trying to add a forbidden message.”);

 throw ex;
 }
 }
}

Th e fi rst test is implemented by the initReached()
and addReachedHandler() pointcuts and fi rst two pieces
of advice (of the aft er and before type). Th e second test
is implemented by the addReachedMessage() pointcut
and the remaining piece of around advice. Th e declare
parents statement is used to introduce the inheritance.

5. EVALUATION

Th e increased unit test resilience to changes has been
evaluated on several scenarios applied to the situation
presented in the previous section:

1. Changing the MessageHandler class name. In this
scenario we changed the MessageHandler class
name to Handler and to SomeThing. Th e testing
aspects were able to handle the names derived
from Handler. In case of SomeThing, they failed.

2. Changing the name of the Message class. In this
scenario we changed the name of Event. Because
our aspects are using wildcards, all the modifi ca-
tions to parameter names were fi ne.

3. Adding an extra argument to the processMes-
sage() method. We added an integer argument
named j to the method call. Th e testing aspects
handled this situation.

4. Renaming an argument in the processMes-
sage(). We renamed the msg argument to msg2.
Th e testing aspects handled this situation, too.

5. Renaming the init() method. We renamed the
init() method to initQueue() and prepare-
Queue(). Th e same problem occurred as in the
fi rst scenario. Since we rely on the method name
to contain the init string, we are unable to han-
dle situations where this string is not present.

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Software and Information Engineering &
Internet and Development Perspectives

372

SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Each of these scenarios would make the tests writ-
ten in a simple object-oriented way obsolete or broken.
Here, it has been demonstrated that just by adding wild-
cards to pointcut defi nitions and making all tested class-
es inherit from the Testable class using the correspond-
ing AspectJ inter-type declaration, the testing aspects
can be made more resilient to code refactoring changes.

6. RELATED WORK

Xu and Yang proposed a method for unit testing
using aspects [2]. Th ey identifi ed that the separation of
crosscutting concerns suites well to unit testing. Th ey
used so-called application specifi c aspects for testing
functionality of a program. Th ey also used testing as-
pects to raise runtime exceptions. Th ey implemented
the tests in the Aspect-Oriented Test Description Lan-
guage (AOTDL). AOTDL code can be translated by
JAOUT/translator to AspectJ code. In the end, they used
JAOUT/translator for automatic generation of JUnit test
classes. Th ese play a role of test oracles that handle test
exceptions from the testing aspects.

Xu and Yang also presented JAOUT as a tool for au-
tomatic generation of unit tests using testing aspects [3].
Combining both of their approaches, their tool was able to
test the code with given testing aspects written in AOTDL.

Sakurai and Masuhara proposed test based pointcuts
[1]. Th ey used unit tests to specify join points at which
the actual aspects are being weaved. Th e whole process
consists of two main steps. First, unit tests (implement-
ed using JUnit) are executed and the sequences of the
join points they address are being recorded. Aft erwards,
when one of the recorded sequence matches, the corre-
sponding aspect is weaved. Th is approach mitigates the
eff ect of pointcut fragility. Sakurai and Masuhara used
a special notation like:

test(get(* Fixtures.invalidUser));

for specifi cation of pointcuts. Th ey used the Aspect-
Bench Compiler to develop their prototype.

Using aspect-oriented programming for testing is
widely present in the JBoss server. Th e principle is the
same as with the previous approaches. Th e aspects used
for testing the functionality are throwing exceptions in
case of failure and the test oracles are catching them.
According to the documentation,1 aspects are defi ned
in separate XML fi les and they can be added or replaced

1 http://docs.jboss.org/aop/1.3/aspect-framework/userguide/
en/html/

at runtime. Mock objects are used for actual testing, and
the JUnit framework is used as a test oracle.

Hughes et al. [6] reported using aspect-oriented pro-
gramming to test a distributed system called the AGnuS.
In their work, they identifi ed several key problems in
dealing with soft ware testing. One of them is the reuse
of testing code in other applications, which is very close
to the objective of the approach proposed in this paper.
For this, Hughes et al. enriched AspectJ syntax with spe-
cial tags which use Java refl ection API. Th e approach
proposed in this paper does not require any changes to
the underlying programming languages, i.e., Java and
AspectJ.

7. CONCLUSION AND FURTHER WORK

An approach to increasing unit test resilience to
changes in production code by decreasing pointcut fra-
gility has been proposed in this paper. Pointcut fragility
is decreased by imposing a common supertype on test-
ed classes and, consequently, by establishing pointcuts
around this common supertype with a reasonable use
of wildcards in signatures within the pointcuts accom-
panied by using refl ection to access necessary objects
within advice bodies to accommodate future changes
in method signatures. Th e approach is implemented in
AspectJ with JUnit used as a test oracle.

Th e approach has been evaluated on several scenar-
ios encompassing typical code modifi cation that render
unusable the tests written in a common object-oriented
way. Th e approach proposed in this paper managed to
make the test resilient to the most of the changes that
have been made to the production code.

Th e approach could be extended to employ a syno-
nym dictionary to generate additional (predicted) pos-
sibilities and build them into pointcut declarations.
JAOUT tool [3] could be used to automate this process.
However, this needs to be balanced, as extensive point-
cuts may obscure the intent. Furthermore, automatically
recorded tester actions over the system being tested [7]
could be used to interactively generate pointcuts.

3D visualization of soft ware models [8]–[10], along
with virtual reality [11], [12] could be used to model and
generate more robust pointcuts. More robust pointcuts
would be of help in aspect-oriented refactoring [13], in
capturing events in complex event processing [14], [15],
and in defi ning language semantics through aspects [16].

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Software and Information Engineering &
Internet and Development Perspectives

373

SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

ACKNOWLEDGMENT

Th e work reported here was supported by the Sci-
entifi c Grant Agency of Slovak Republic (VEGA) under
the grant No. VG 1/0759/19, by the Slovak Research and
Development Agency under the contract No. APVV-
15-0508, by the education and research development
project “STU as a digital leader,” project no. 002STU-2-
1/2018 by the Ministry of Education, Science, Research
and Sport of the Slovak Republic, and by the Research
& Development Operational Programme for the pro-
ject Research of methods for acquisition, analysis and
personalized conveying of information and knowledge,
ITMS 26240220039, co-funded by the ERDF.

REFERENCES

[1] K. Sakurai and H. Masuhara, “Test-based pointcuts:
a robust pointcut mechanism based on unit test cases
for soft ware evolution,” in Proceedings of 3rd Work-
shop on Linking Aspect Technology and Evolution,
Vancouver, British Columbia, Canada, ACM, 2007.

[2] G. Xu and Z. Yang, “A novel approach to unit test-
ing: the aspect-oriented way,” in Proceedings of 2004
International Symposium on Future Soft ware Tech-
nology, ISICT ’04, Las Vegas, Nevada, USA, 2004.

[3] G. Xu, Z. Yang, H. Huang, Q. Chen, L. Chen, and
F. Xu, “JAOUT: automated generation of aspect-
oriented unit test.” in 11th Asia-Pacifi c Soft ware
Engineering Conference, APSEC 2004, Busan, Ko-
rea, IEEE, 2004.

[4] C. Koppen and M. Störzer, “PCDiff : attacking the
fragile pointcut problem,” in 1st European Inter-
active Workshop on Aspects in Soft ware, EIWAS
2004, Berlin, Germany, 2004.

[5] A. Bertolino, “Soft ware testing research: achieve-
ments, challenges, dreams.” in Proceedings of 2007
Workshop on the Future of Soft ware Engineering,
FOSE ’07, part of ICSE 2007, Minneapolis, MN,
USA, IEEE CS, 2007.

[6] D. Hughes, P. Greenwood, and L. Blair, “Aspect
testing framework.” in Proceedings of FMOODS/
DAIS 2003 Student Workshop, Paris, France, 2003.

[7] K. Frajták, M. Bureš, and I. Jelínek, “Exploratory
testing supported by automated reengineering of
model of the system under test,” Cluster Comput-
ing, vol. 20, no. 1, pp. 855–865, 2017.

[8] M. Ferenc, I. Polášek, and J. Vincúr, “Collaborative
modeling and visualisation of soft ware Systems us-
ing multidimensional UML,” in Proceedings of 5th
IEEE Working Conference on Soft ware Visualiza-
tion, VISSOFT 2017, Shangai, China, IEEE , 2017.

[9] L. Gregorovič and I. Polášek, “Analysis and design
of object-oriented soft ware using multidimensional
UML,” in Proceedings of 15th International Confer-
ence on Knowledge Technologies and Data-Driven
Business, Graz, Austria, ACM, 2015.

[10] L. Gregorovič, I. Polášek, and Branislav Sobota,
“Soft ware model creation with multidimensional
UML,” in Proceedings of 9th IFIP WG 8.9 Working
Conference, CONFENIS 2015, part of WCC 2015,
Daejeon, Korea, LNCS 9357, Springer, 2015.

[11] J. Vincúr, P. Návrat, and I. Polášek, “VR City: soft -
ware analysis in virtual reality environment,” in
IEEE International Conference on Soft ware Quality,
Reliability and Security, QRS 2017, Prague, Czech
Republic, IEEE, 2017.

[12] J. Vincúr, I. Polášek, and P. Návrat, “Searching and
exploring soft ware repositories in virtual reality,” in
Proceedings of ACM Symposium on Virtual Reality
Soft ware and Technology, VRST 2017, Gothenburg,
Sweden, ACM, 2017.

[13] R. Pipík and I. Polášek, “Semi-automatic refactoring
to aspect-oriented platform,” in Proceedings of 14th
IEEE International Symposium on Computational
Intelligence and Informatics, Budapest, IEEE, 2013.

[14] J. Lang, M. Jantošovič, and I. Polášek, “Re-usability
in complex event pattern monitoring,” in Proceed-
ings of IEEE 10th Jubilee International Symposium
on Aplied Machine Intelligence and Informatics,
Herľany, Slovakia, pp. 265–270, IEEE, 2012.

[15] J. Lang and J. Janík, “Reactive distributed system
modeling supported by complex event processing,”
in Proceedings of ECBS-EERC 2013, 3rd Eastern
European Regional Conference on the Engineering
of Computer Based Systems, Budapest, Hungary,
IEEE CS, 2013.

[16] J. Porubän, M. Sabo, J. Kollár, and M. Mernik, “Ab-
stract syntax driven language development: defi ning
language semantics through aspects,” in Proceed-
ings of International Workshop on Formalization
of Modeling Languages, FML ’10, ECOOP 2010,
Maribor, Slovenia, ACM, 2010.

