
SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

360

Damir Solajic*,
Anamarija Petrović

Levi9 Technology Services,
Novi Sad, Serbia

Correspondence:
Damir Solajic

e-mail:
d.solajic@levi9.com

DEVOPS AND MODERN SOFTWARE DELIVERY

SOFTWARE AND INFORMATION ENGINEERING & INTERNET AND DEVELOPMENT PERSPECTIVES

Abstract:
Delivering software is often a long, difficult and risky process. Defects and
integration issues pop-up at the very last moment and cause dissatisfaction
to end users, the development teams and business stakeholders. Further-
more, lack of collaboration between different teams generally results in the
implementation of wrong functionality, integration and deployment errors
and finger-pointing. The goal of this paper is to summarize the best DevOps
practices relevant to software delivery. These practices are a result of a sys-
tematic and continuous improvement of the software delivery process and
range of behavioral and cultural changes in the way of working and technical
improvements in the software delivery process.

Keywords:
DevOps, Lean, Continuous Delivery.

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2019-360-368

1. INTRODUCTION

In the traditional organization of the soft ware development process, a
stream of work fl ows from an idea from business and marketing depart-
ments to product management and design departments who translate
this idea into business requirements and specifi cations. Th ese product
requirements are then handed over to soft ware development teams who
are converting them into soft ware code. Th e running code is inspected by
a quality assurance, who test it against their interpretation of the original
product requirements. Th e IT Operations team performs preparation of
appropriate environments and deployment of the code. At the very end,
oft en too late, work gets tested on security aspects by an Infosec team.

Furthermore, Development and IT Operations have quite opposed
goals. Development has a prime objective to introduce new features and
therefore bring change into the system, while the goal of IT Operations is
to preserve stability and prevent change as a possible cause of instability.
All these teams are usually in the separate organizational departments,
behaving like silo’s, trying to protect their realms. Th is confl ict leads to
poor soft ware and service quality and bad customer experience. Such a
way of working very much lacks attention to what should be the com-
mon goal, which is the fast and continuous delivery of valuable soft ware
to customers [1].

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Software and Information Engineering &
Internet and Development Perspectives

361

SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Th is process has at least fi ve critical handover mo-
ments, where the information is being transitioned
between diff erent departments and distorted due to
diff erent interpretations. From a time perspective, this
traditional silo organization causes signifi cantly higher
lead times from a business idea to implementation, due
to a proportional delay in every silo. If we defi ne Wait
Time as the ratio of Busy vs. Idle, then at 50% utilization
wait time will be 1 unit of time. At 90% this will be nine
units. With earlier mentioned fi ve handover moments
total wait time would be 45 units of time [2].

Fig. 1. Defi nition of Lead Time as a sum of
Wait Time and Process Time

“When people are trapped in this downward spiral
for years, especially those who are downstream of De-
velopment, they oft en feel stuck in a system that pre-
ordains failure and leaves them powerless to change the
outcomes. Th is powerlessness is oft en followed by burn-
out, with the associated feelings of fatigue, cynicism, and
even hopelessness and despair.” [2]

We must change the way of working, and we believe
that DevOps practices are showing us the best way for-
ward.

High performing IT organizations that are applying
DevOps practices are outperforming their less perform-
ing competition by deploying code thirty times more
frequent with sixty times higher success rate, having two
hundred times faster lead time for implementation of
changes and 168 times faster mean time to restore the
service [3]. Th ese companies have higher growth rates,
but also higher employee satisfaction and lower rates of
employee burnout. Th ey manage to consistently provide
stable, reliable and secure service to their customers.

DevOps approach enables organizations to cre-
ate a stable way of working, where small poly-skilled
teams can effi ciently and independently develop, test
and deploy code and add value to customers, quickly,
safely, securely, and reliably. DevOps approach allows

organizations to maximize productivity, enable organi-
zational learning, create high-trust, high employee sat-
isfaction collaborative culture that helps them win in the
competitive market.

Th e DevOps practices are complementing Lean and
Agile Soft ware Development practices and can be clas-
sifi ed into three areas [4]:

 ◆ Ensuring smooth and fast Flow of work from
product design and development to operations
and ultimately to the customer

 ◆ Enabling fast Feedback from operations to de-
velopment, to facilitate quick detection, recovery
and, in the end, to prevent problems from hap-
pening again

 ◆ Creating a high-trust culture of Continuous Im-
provement that allows initiative and experimen-
tation and embeds a culture of organizational
learning.

“DevOps defi nes technology value stream as the pro-
cess required to convert a business idea into a technol-
ogy-enabled service that delivers value to the customer”
[2], so the primary task of Flow, Feedback and Continu-
ous Improvement is to ensure fast and reliable delivery
of useful soft ware to the customer.

2. FLOW

Th e goal of DevOps practices of Flow is to ensure
smooth fl ow of work from Product Design, through De-
velopment into the Operations. Since the soft ware code
has value only when it is in the production and used by
the customers, the goal is to increase fl ow and reduce
lead time from a business idea to soft ware deployed in
the production.

First and foremost, to be able to organize the work,
we need to make all work in the value stream visible:
product backlog items, soft ware defects, production in-
cidents, service requests, everything. We can organize
issues in the form of Kanban or Scrum boards and pro-
mote a pull system of work. Furthermore, this approach
enables us to perform value stream analysis which gives
us a starting point for our improvement actions. One
way of making this analysis is a value stream map pre-
sented on a fi gure below.

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Software and Information Engineering &
Internet and Development Perspectives

362

SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Fig. 2. Value Stream Map [4]

Just like in the manufacturing, based on the Th eory
of Constraints, to improve the fl ow of the process, we
should subordinate everything to identifying and im-
proving the bottleneck. Improving fl ow at any work sta-
tion before the bottleneck would cause a further pile-up
of the inventory at the bottleneck (e.g., un-checked-in
code) while improving anything behind it, will cause
further starvation of the work stations behind (e.g.,
nothing to test). Such an improvement process is in
principle a continuous improvement cycle, similar to
the well-known Plan-Do-Check-Act Deming cycle.

Th e causes that disrupt productive fl ow in the tech-
nology value stream, usually called sources of waste,
are: defects, partially done work, waiting, motion, task
switching, extra processes that do not add value, extra
features, non-standard or manual work and heroics [4].
Th e goal of a continuous improvement cycle is to make
these wastes and hardships visible and to work on elimi-
nating them.

We used the following techniques in our continuous
endeavor to reduce waste and improve fl ow.

Reduce the Number of Handoff s

Initially, we integrated soft ware development and
quality assurance teams into one team. Not only person-
nel were integrated, but also activities. Testing activities
are executed from the very start of the delivery iterations
with for instance preparation of test cases. Introduction
of automated testing not only signifi cantly reduced wait
time but also contributed to a way of working where
the whole team participates in the testing activities, thus
enabling a smoother fl ow and greater fl exibility.

Th e second step encompassed improving collabo-
ration between Development and IT Operations. De-
pending on the case, we used two approaches: separate
functional teams or integrated feature teams (sometimes
named as market-oriented teams). With the functional
team approach, IT Operations team is responsible for
enabling full self-service possibilities for soft ware devel-
opment teams, so that soft ware development teams can
perform all activities without a need to make a request
to IT Operations. Th ese activities especially encompass
provisioning of environments and deployment activities
which were critical handover moments due to a large
amount of waste created (due to wait and defects). For
all other activities, each soft ware development team has
a designated point of contact in IT Operations team.
Th is contact is responsible for understanding the scope
of the work of the development team and ensuring that
the self-service platform is serving the needs of the de-
velopment team.

In the feature teams approach, IT Operations is an
integral part of the soft ware development teams, and
their activities are planned and executed together with
all the other activities. Furthermore, the natural ex-
change of the knowledge contributed to the fact that
developers started performing deployments, while sys-
tem engineers understood better the functioning of the
applications.

At the third step, we focused on improving the col-
laboration with product management. Th e goal of this
step was to reach a common understanding of each oth-
er’s work and to improve the quality of requirements and
specifi cations. We applied the techniques of Specifi ca-
tion by Example [5]: specifying collaboratively (e.g., user
story mapping sessions, refi nement sessions), illustrating
using examples and living documentation that enabled
building the right things and building them right.

Reduce Batch Sizes

Th e Flow can be increased by reducing intervals of
work, minimizing batch sizes, building quality in from
the very start and preventing defects fl owing to down-
stream work centers. Batch size proved to have a leading
role in increasing fl ow, consequently reducing lead time
and improving quality.

In the soft ware development value stream, batch
size equals to the amount of an undelivered code. Large
batch sizes, due to integration issues, directly increase
lead time and decrease quality. Lower quality means

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Software and Information Engineering &
Internet and Development Perspectives

363

SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

massive disruptions to downstream work centers be-
ing Quality Assurance, IT Operations, and Security. On
the other side, reducing batch sizes leads to shorter lead
times, enables faster error detection, while the defects
are still small, which, by default, implies shorter recov-
ery times. Modern soft ware delivery practices prefer
optimizing Mean Time to Restore (MTTR) more than
Mean Time Between Failures (MTBF), which in princi-
ple means being able to recover fast from failures that
will inevitably happen, compared to of minimizing the
number of defects. Reducing batch sizes is achieved by
shortening delivery iterations and by integrating code
frequently.

Limit Work in Progress

Work in progress is one of the most signifi cant
sources of waste in the soft ware development pro-
cess. Unfi nished tasks are an inventory that is never
used but creates costs. Without being managed, work
in progress is piling up, causes multitasking and task
switching which consequently severely degrades a fl ow.
Work in progress needs to be limited to ensure it is get-
ting fi nished. Limiting work in progress makes it also
easier to identify problems which are preventing work
completion. If, for example, limiting work in progress
causes that we do not have any work, although it might
be tempting to take a new task, it would be smarter to
see what is causing a delay in upstream work center and
fi x that problem.

Continuously Identify and Improve Constraints and
Eliminate Waste

As stated above, a focus should always be on one and
only one constraint. We need to identify that constraint
and work on improving it continually. Improving on
anything besides that constraint is a pure waste at that
moment in time. Usual sources of constraints in the
soft ware development process are unclear requirements,
disruption in environment provisioning, deployments,
test execution, and non-evolving architecture. Further-
more, we should continuously work on removing waste
from our process, fi rstly minimizing rework by prevent-
ing the fl ow of defects to downstream work centers.

In all cases above, it proved, that although organiza-
tion structure is important, the culture is fundamental.
Th e culture is a way how people act and react, espe-
cially in times of need. Ownership of the product and

improvement mindset are critical success factors for any
team. Th e teams that took ownership, homogenized, con-
tinuously improved, team members helped each other,
acted regardless of individual competencies or prefer-
ences and at the end successfully delivered high quality.

Continuous Delivery

Technical practices of Flow implemented through
Continuous Delivery pipeline [6] enable integrated and
automated fl ow of work from the keyboards of the de-
velopers to the production environment. Th ese practices
establish a repeatable and reliable process for soft ware
development teams to continually check-in code chang-
es in the version control system, perform automated
tests against it and deploy it to production.

We can divide these practices into fi ve areas:
 ◆ Version Control practices
 ◆ Continuous Integration
 ◆ Test Automation
 ◆ Infrastructure Automation
 ◆ Automated Deployment

All source code (application, tests, confi guration,
data, infrastructure) changes are checked-in to a sin-
gle Version Control System. All code changes are per-
formed either on the master branch (so-called trunk-
based development) or short-lived feature branches.
Binaries are kept in the artifact repository, but also can
be recreated from the source code. Practices like feature
toggles enable integrating the code without aff ecting
other functionalities.

Each check-in (potentially) triggers a Continuous In-
tegration build. Each integration is verifi ed by an auto-
mated build and by unit and integration tests execution
to detect component and integration errors as quickly
as possible. Th is approach leads to a reduced number of
integration problems and allows the teams to develop
soft ware more rapidly. In the case of a broken build, all
ongoing activities stop until the problem is solved and
the build becomes releasable again.

Test Automation as a practice enables automated
execution of tests by comparing actual and expected re-
sults. Test Automation encompasses unit, integration,
functional, performance and security tests and reduces
the need for manual testing to a minimum. It requires
right skillset from both testers as well as developers and
their continuous teamwork, but also requires quality
embedded in the architecture of the soft ware itself.

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Software and Information Engineering &
Internet and Development Perspectives

364

SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Infrastructure Automation enables automated on-
demand provisioning and confi guration of hosting en-
vironments. With modern “Infrastructure as a Code”
tools like Puppet or Chef and public or private cloud
and container possibilities, this enables us to quickly
spin-up any environment from the code, run our tests
and deallocate the environment when automated tests
fi nish. Even more, we can run as many testing environ-
ments as we need and ease resource dependencies. Soft -
ware development teams can provision production like
environment very early and continuously ensure that
application is running reliably. With this approach, we
guarantee that all environment changes are executed
from the code, therefore disabling possibility for manual
errors. Faulty machines or environments can quickly be
decommissioned, and put new ones in their place since
it is easier to rebuild than to repair.

Finally, Automated Deployment covers the so-called
“last mile” of the deployment pipeline. Th is part of the
process can be fully or semi-automated. Full automation
of the deployments is usually used in the case of testing
environments, while in the case of production environ-
ment we potentially want to keep the additional level of
control which includes the manual step of exploratory
or smoke testing before an automated deployment. De-
ployment process needs to be an automated self-service
so that any team member can deploy an application to
any environment, reliably and without fear of making
a mistake. It is crucial that we decouple deployments
(installation of a specifi c version of the soft ware to a par-
ticular environment) from releases (exposing new func-
tionality to customers). Executing deployments should
be easy, stress-free, repeatable activity. Releasing new
features requires a careful selection of the right strategy
to make it such. Two groups of release patterns exist,
environment-based and application-based. Environ-
ment-based release pattern requires that diff erent ver-
sions of an application exist in diff erent environments.
Th e actual release is then executed merely by making the
desired environment available to all or only a group of
users (so-called blue-green releases and canary releases).
With application-based release patterns, the new release
is codifi ed (with feature toggles) in the application and
confi guration code and made available with the right
code changes (so-called dark launching).

Tooling is not a solution for Continuous Delivery
by itself. It is just a mean that should help to create an
integrated and automated solution, that in combination
with the right culture of taking ownership creates a fast
and smooth fl ow of work from the business idea to the

successful product used by end customers. Most impor-
tantly, to make Continuous Delivery a success, Devel-
opment, Test and IT Operations teams need to work
together as one delivery team from the very start.

Fig . 3. Example Continuous Delivery Pipeline

Based on our experience, soft ware and system archi-
tecture choices very much determine our ability to set
continuous delivery in practice. Systems should be ar-
chitected for testability, deployability, and monitorabil-
ity and architecture itself should be able to evolve based
on the needs of the system. Modular, loosely-coupled,
well-encapsulated architectures, with well-defi ned in-
terfaces exposed through APIs, have low architectural
entropy and enable a much higher degree of adaptability
and agility in general. Legacy, monolithic systems re-
quire much more eff ort to reach a satisfactory level of
automation, but the patterns like strangler application
pattern or branching by abstraction enable incremen-
tally evolving a whole system, step-by-step leading to
an entirely new one. Th ese patterns allow the evolution-
ary design of the application architecture while allowing
everybody to work on the same source code.

3. FEEDBACK

Th e g oal of DevOps practices of Feedback is to en-
able fast and constant feedback loops, with the aim to
create a more reliable, secure and resilient system. Our
continuous care should be to detect problems while they
are still small and easy to fi x, to fi nd them before they
are visible to our customers and to prevent major system
outage. In the end, we need to learn from problems and
embed these learnings to future work.

We can do this only by creating, amplifying and
shortening feedback loops so that we see the problems as
they occur. Failures are inevitable in any complex system,
so we must design a safe system of work, where work
is done without fear, with confi dence that errors will
be detected quickly, long before serious consequences.

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Software and Information Engineering &
Internet and Development Perspectives

365

SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Identifying problems as they occur enables us to validate
or invalidate possible causes quickly and to be faster and
therefore cheaper in fi nding and fi xing the issues.

Solving Problems as Th ey Occur

In the case when the issues occur, whether these are
production issues or broken build during continuous
integration, we should team-up to solve the problem
quickly. Like in manufacturing, with Andon cord of
Toyota Production System, the production line should
be stopped until the problem is solved. Upon solution,
we should share learnings throughout the organization
to further improve the processes. Th is approach, com-
pared to fi xing when we have time, prevents the prob-
lem, as a source of waste, going to a downstream work
center, where the cost and eff ort to repair it would be
signifi cantly higher. Moreover, it prevents the accumu-
lation of technical debt.

Stopping all other work and especially preventing
the start of new work before the problem is solved, en-
sures that new errors are not introduced into the system
until current ones are resolved. Th e work center could
potentially have the same problem in the next operation
if we do not address it right away. Th e issues are oft en a
result of specifi c circumstances in the complex systems,
and, if not treated immediately, it is likely to be impos-
sible to reconstruct particular events that were leading
to them and therefore much more diffi cult to investigate
the cause and fi nd the solution. Good version control
commenting practices and change logs prove to be an
effi cient instrument for tracing the source of problems.

Team Ownership

We reinforce the feedback loop if Development
teams participate in the support activities together with
IT Operations and others. Support activities also in-
clude standby support during out-of-offi ce hours. Th e
risk of being woken up in the middle of the night makes
everybody being much more diligent. In such cases,
not only developers better understand the hardships of
downstream work centers, but also more quality gets
built-in. At many high-performing organizations with
a functional way of working, development teams are re-
sponsible for running their services in the production
until the services are stable enough to be transitioned
to IT Operations. With this approach we push quality
closer to the source, encourage teams to automate their

processes and above all, to take ownership and respon-
sibility for the product and services they are providing.
Th e team should additionally use techniques of contex-
tual inquiry, where they sit together with the end users
to understand how they use the product and what are
possible improvements from the usability perspective.

Peer-reviews and Change Coordination

Peer review process proved to be a useful practice of
feedback that results with an increase of quality of the
code and enables knowledge sharing. Modern version
control repositories enable peer-review through pull re-
quest process where each check-in gets reviewed by a
predefi ned number of designated experts. Th is process
requires discipline to keep review batch sizes small so
that review is easier to plan and perform. It also enables
moving away from inspections and approvals which
are typical for low-trust environments with command-
and-control cultures. High performing organizations
rely more on peer reviews than on external approval of
changes [3].

In multi-team environments, it is imperative to en-
sure change coordination and scheduling of changes.
When the deployment batch size is more signifi cant,
change success rates go down, while a number of inci-
dents and recovery time grow. Th erefore, especially in a
multi-team environment, it is essential to keep diff erent
teams working on the same tact, having them synchro-
nized and managing the dependencies between them
well. A possible approach is to have every team repre-
sented in the separate integration team that takes care of
coordination, integration, and synchronization of work.

Create Centralized Telemetry

Technical practices of Feedback require creating
means of centralized monitoring for gathering telem-
etry. We establish centralized monitoring with monitor-
ing server(s), which collect diff erent data (events, logs,
and metrics) using agents running on the monitored ob-
jects (virtual machines, containers, physical equipment)
or by entering data from diff erent sources through an
API. Modern automation techniques enable that each
machine or application can take care of parameters they
want to be monitored on and make sure that either they
are automatically registered or dynamically discovered
by the monitoring server.

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Software and Information Engineering &
Internet and Development Perspectives

366

SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Th e gathered data we call telemetry and classify it to:
 ◆ Business telemetry (e.g., number of sales transac-

tions, number of new users, number of logins)
 ◆ Application telemetry (application health/faults,

transaction times, applications logs, external sys-
tems)

 ◆ Client telemetry (application errors and crashes
on the client side)

 ◆ Environment telemetry (operating system, net-
working, database, storage, web traffi c, CPU,
memory)

 ◆ Deployment Pipeline telemetry (deployment fre-
quency, deployment status, static code analysis
metrics, code coverage metrics)

Telemetry helps us to pinpoint and solve the prob-
lems faster, whether it is a defect in the application code,
in the environment, data or external. It enables a disci-
plined approach to problem-solving, where we can react
based on the facts and not on the notion (e.g., restarting
a server whenever we have a problem, without fi nding
the underlying cause). Solving problems should also en-
compass adding new telemetry, that will enable easier
discovery and prevention of such issues in the future.
Th is process should be repeated for ever-weaker fail-
ure signals (incidents and near misses) with the aim to
achieve pro-active problem prevention.

Th e telemetry should be accessible and shared with
the entire value stream. Retrieving telemetry informa-
tion from the telemetry system should be self-service,
through dashboards and APIs and not by opening tick-
ets for IT Operations. Adding business and application
telemetry should be easy through code instrumenta-
tion and APIs. Furthermore, telemetry information
should be put out on display in highly visible locations,
through so-called information radiators. Having telem-
etry accessible and visible enables us to quickly notice
the problem, structurally solve it based on the facts and
not only have a signifi cantly better time to recover, but
also strengthen the relationship between Development
and Operations by creating empathy and trust between
upstream and downstream work centers.

Continuously Analyze and Improve Telemetry

Diff erent graphical visualization tools can visually
represent telemetry data. Th ese tools, as well as diff erent
statistical analysis tools, can help us to analyze and use
telemetry data for various purposes which range from

trend analysis and predictions (e.g., the prediction for
auto-scaling), outlier and anomaly detection, to smart,
pro-active alerting and escalation. Furthermore, these
tools enable us to cross-reference diff erent metrics to
fi nd correlations between business outcomes or appli-
cation defects and application, environment or deploy-
ment telemetry. Usage of simple statistical methods for
data with normal distribution can prove to be quite
useful for pro-active alerting and automated actions in
the case of outlier detection (detection of nodes that are
diff erent from others). More complex algorithms might
be needed to analyze the data with non-normal distri-
bution to achieve good anomaly detection or predictive
analysis.

Experimenting

When we have our continuous delivery and telem-
etry system with relevant data in place, we become much
more agile. Agility enables us to perform user research
by experimenting in production and quickly validate or
invalidate our business ideas. Without user research,
there is a high chance (research [4] shows 2 out of 3)
that our features deliver no value to our organization,
while they make our codebase more complex, diffi cult to
maintain and change. Furthermore, “the eff ort to build
these features is made at the expense of delivering fea-
tures that would deliver value” [4].

A/B testing or hypothesis-driven development tech-
niques enable us to implement business ideas in mini-
malistic form, quickly try them in production, compare
the outcomes with expectations and make informed
decisions. We can do this without risk, in some cases
even in a fully automated fashion, since the telemetry
system and automated release techniques safeguard us
from negative outcomes. A/B or split testing is a well-
known marketing technique that enables validation of
an idea by comparing control and treatment specimen.
When we release a new feature (treatment) to a targeted
group of users (canary releasing), we can compare the
telemetry data with control specimen and decide on the
validity of our business idea before further investment in
its development. If the idea proves to be invalid, we can
switch it off with feature fl ags. If the implementation is
faulty, we can decide to fi x forward or to rollback.

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Software and Information Engineering &
Internet and Development Perspectives

367

SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

4. CONTINUOUS LEARNING AND
IMPROVEMENT

Finally, DevOps practice of Continuous Learning
and Improvement creates the culture of continuous
learning and experimentation, constant creation of in-
dividual knowledge which is turned into organizational
knowledge with the primary goal to improve our ser-
vice. Only high-trust culture, without room for fear and
punishment in the cases of errors and mistakes, can be a
constructive ground for continuous improvement. Th is
culture leads to the creation of safe systems of work, that
result in high-quality soft ware products with embedded
resilience and safety.

Enable Organizational Learning

Safe systems of work mean that when incidents oc-
cur, we look for long-term structural solutions that pre-
vent such incidents from happening again. We do this
through a disciplined, systematic approach by avoiding
any blaming of the ones potentially responsible for the
problem. We should also avoid creating more processes
and procedures that would “prevent” such problems
from happening. Blaming and bureaucracy do not pre-
vent nor solve the problems, but they do cause fear,
which results in issues usually remaining hidden until
real disasters happen. We must avoid it and instead we
should defi ne failure as an opportunity for learning and
improvement.

Aft er the solution of the incident, we conduct blame-
less post-mortem sessions, where we discuss what led to
the incident and what measures, technical and behavio-
ral, we can take to prevent it from happening again. We
use this approach for serious to less serious issues, even-
tually getting to near-misses and being able to prevent
problems before they occur. We record these sessions
into our knowledge database, promote this knowledge
into the organization and embed it as broader organi-
zational learning. Knowledge database should be easily
searchable and accessible for everyone. Furthermore,
team channels or chat rooms proved to be useful plat-
forms for sharing knowledge for resolution of incidents
and broader knowledge exchange, so logs from those
sessions should also be accessible. All these local dis-
coveries should be converted into global knowledge and
global improvements.

In the end, “code is the ultimate truth” so we should
keep knowledge in the version control repositories

accessible, not only the soft ware code, tests, and confi gu-
ration but also living documentation [5], in the form of
codifi ed specifi cations expressed in Gherkin test cases
and automated tests.

Institutionalize the Improvement of Daily Work

“In the absence of improvements, processes do not
stay the same – due to chaos and entropy processes de-
grade over time.” [2]

When we avoid fi xing the problems structurally,
continuously patching them with workarounds, our
problems and technical debt accumulate. Eventually,
technical debt makes any new work quite expensive or,
even worse, prevent the organization from completing
any further work. Reserving time to deal with technical
debt, adding new automated tests to detect boundary
conditions, adding new production telemetry, identify-
ing categories of changes that require peer-review, or-
ganizing Kaizen Blitzes or Hackathons and conducting
exercises with Game-Days proved to be useful instru-
ments to continuously improve the application and level
of our service.

Based on our experience some 5 – 20% of the soft -
ware development team time should continuously be
used to pay the technical debt. Th is time should be wise-
ly used to introduce improvements and innovation. We
should always use a chance for “opportunistic refactor-
ing” and “always leave the code a little bit better than we
found it” [7]. While Kaizen Blitz exercises enable teams
to self-organize and work for a predefi ned amount of
time on fi xing any problem they fi nd essential, Game-
Day testing allows them to improve resilience, reliabil-
ity, and stability of their applications by introducing in-
stability and failure into the system. On the other side,
Hackathons enable teams to work on their innovative
ideas.

In the end, whatever we do, we should value the im-
provement of our daily work more than a daily work
itself. It is a responsibility of leaders to create conditions
in which their teams can thrive. Th ey should promote
the value of continuous learning, disciplined problem-
solving, calculated risk-taking, continuous questioning
and experimentation over just being careful.

5. CONCLUSION

Based on our extensive experience, we are fully con-
vinced that the DevOps approach to soft ware delivery is

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Software and Information Engineering &
Internet and Development Perspectives

368

SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

a modern and comprehensive approach that results in
high-quality soft ware products and customer satisfac-
tion. Th ese practices require a change in the technol-
ogy aspect of the value stream, through modernization,
automation, and innovation. Even more importantly, it
needs a change in the cultural and behavioral approach
to soft ware development as a practice, through taking
ownership of the work, responsibility for our products
and services, optimizing work streams and teaming-up
during problems. When applied together, these prac-
tices lead to the state-of-the-art soft ware development
process, quality products, happy employees and satisfi ed
customers.

REFERENCES

[1] Agile Manifesto, https://agilemanifesto.org/princi-
ples.html

[2] G. Kim, K. Behr, G. Spaff ord, Th e Phoenix Project:
A Novel about IT, DevOps, and Helping Your Busi-
ness Win, IT Revolution Press; 1st edition, 2013

[3] Th e State of DevOps Reports 2014 - 2018, https://
puppet.com/resources/whitepaper/state-of-devops-
report

[4] G. Kim, P. Debois, J. Willis, J. Humble, J. Allspaw,
Th e DevOps Handbook: How to Create World-
Class Agility, Reliability, and Security in Technol-
ogy Organizations, IT Revolution Press, 2016

[5] G. Adzic, Specifi cation by Example: How Successful
Teams Deliver the Right Soft ware, Manning Publi-
cations; 1st edition, 2011

[6] J. Humble, D. Farley, Continuous Delivery: Reliable
Soft ware Releases through Build, Test, and Deploy-
ment Automation, Addison-Wesley Professional; 1st
edition, 2010

[7] R. C. Martin, Clean Code: A Handbook of Agile
Soft ware Craft smanship, Prentice Hall; 1st edition,
2008

