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Abstract: 
This paper presents hybridized implementation of the well-known particle 
swarm optimization algorithm that belongs to the family of swarm intel-
ligence metaheuristics. The proposed approach was adapted for tackling 
constrained optimization problems. With the basic goals to enhance the 
converge of the algorithm and to improve the exploitation – exploration 
tradeoff, the mechanism that replaces exhausted solutions from the popula-
tion with randomly generated solutions from the search domain was adopted 
from the artificial bee colony approach. Proposed metaheuristic was tested 
on standard constrained engineering benchmark, and comparative analysis 
with other state-of-the-art algorithms was conducted. Empirical results ob-
tained from practical simulations proved that the hybridized particle swarm 
optimization for constrained problems is able to successfully tackle this type 
of NP hard challenges. 
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1. INTRODUCTION 

Since many real-world problems can be formulated as optimization 
tasks, optimization has been widely applied in the domains of computer 
science and mathematics. Th e hardness of particular problem depends 
on the types of mathematical relationships between decision variables, 
objective function and in same cases constraints. 

Many real-life challenges can be categorized as NP hard problems. 
Th ese problems can be be further divdied into two basic groups: discrete 
(combinatorial) and global optimization (conitnuous) problems. Global 
optimization tasks can be distinguished as unconstrained (bound con-
strained) and constrained. 

In this paper, the nonlinear continious constrained optimization 
problems are particulary addressed, and they can be mathematically ex-
pressed as:
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where x∈F⊆ S. Symbol S denotes the search space, as 
n-dimensional hyper-rectangular space in Rn. Th e Rn is 
defi ned by lower and upper bounds of decision variables:

Finally, the feasible domain of the search space F⊆ S 
is determined with a set of m linear and nonlinear con-
strains that are formulated as following: 

where q denotes the number of inequality constraints, 
while the number of equalities constrains is m-q.

Th e utilization of classic deterministic algorithms 
(algorithms that for the same set of input always gener-
ate the same output), or exhaustive search approaches 
for solving NP hard problems is not feasible since it 
would take too long time for algorithms to execute. In 
the case of such problems,  it is better to employ some of 
the metaheuristic methods, that could not guarantee to 
obtain an optimal solution, but could provide satisfying 
solution within reasonable execution period. 

In recent years, many metaheuristic algorithms have 
been devised for solving large variety of optimization 
problems from both areas, combinatorial and global. 
Usually, metaheuristics are population and iterative 
based approaches that work with a set of solutions that 
are being improved in each iteration of algorithm’s ex-
ecution by applying the search equation. When a new 
metaheuristic approach is developed, it is good practice 
to test it fi rst on standard benchmark problems to evalu-
ate its solutions’ quality and robustness. Later, the me-
taheuristics can be adapted for solving various kinds of 
real-life optimization problems. 

In this paper, we present our implementation of the 
well-known particle swarm optimization (PSO) me-
taheuristics that was adjusted for solving global con-
strained optimization tasks. Th e PSO approach belongs 
to the group of swarm intelligence metaheuristics. Th e 
solutions’ quality and the performance of the proposed 
approach was validated against the well-known conas-
traned optimization benchmarks.

Th e rest of the paper is structured as follows. In 
Section I, we brifely present basic principles and lit-
erature review of swarm intelligence metaheuristics. 
Th e implementation of the hybridized PSO algorithm 
for constrained optimization is given in Section II. 

Experimental setup, empircal results and comparative 
analysis is given in Section III, while Section IV con-
cludes this paper and provides guidelines for future 
work in this domain. 

2. REVIEW OF SWARM INTELLIGENCE 
METAHEURISTICS

At the very general level, metaheuristics can be di-
vided into two groups: those that are inspired by the 
nature, and those that are not inspired by the nature. 
Nature-inspired metaheuristics can further fall into 
one of two categories: evolutionary algorithms (EAs) 
and swarm intelligence. Th e EAs conduct the search by 
simulating the process of natural evolution by applying 
operators adopted from the nature, such are crossover, 
mutation and selection, Th e most well-known example 
of EA is genetic algorithm (GA) [1]. Th e GA was suc-
cessfully applied to various kinds of optimization chal-
lenges [2], [3].  

Swarm intelligence metaheuristics mimic collective 
behavior and social interactions between individuals in 
swarms, like groups of birds and fi sh, bees, fi refl ies, bats, 
ant, etc [4]. Every artifi cial agent (individual) in swarm 
intelligence algorithms is relatively unsophisticated 
and simple. However by established communication 
between such agents, a sofi sticated system is developed 
that is directed towards achiving a particular goal.

Two essential mechanisms that guide the search pro-
cess in swarm intelligent approaches are exploitation 
(intensifi cation) and exploration (diversifi cation). Th e 
intensifi cation perform the local search process around 
the current solutions in the population, while the diver-
sifi cation conduct exploration of the still undiscovered 
domain of the search space. Since many benchmark and 
real-life optimization problems have many local and/or 
global optimums, exploration prevents the algorithm to 
be trapped in the local optimu,, while the exploitaiton 
enables fi ne search process around the current best solu-
tions in the population.  

Artifi cial bee colony (ABC) is one of the most 
prominent representative of swarm algorihtms. Th e 
ABC simulates behavior of honey bee swarms by uti-
lizing three types of artifi cail agents: employees, scouts 
and onlookers. Th is metaheuristics has many successful 
implementations for many benchmark problems [5], as 
well as for practical challenges [6], [7]. Firefl y algorithm 
(FA) is another widely applied representative of swarm 
algorithms, that was devised by Yang in 2008 [8], and 
later was improved [9]. Some of the FA’s applications 

(2)
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include: constrained benchmark challenges [10], wire-
less sensor network localization [11] and portfolio opti-
mization [12]. Many hybridized FA approaches can be 
also found in the literature survey [7], [13].

Fireworks algorithm (FWA), that emulates the pro-
cess of fi reworks’ explosion, was fi rstly proposed by Tan 
and Zhu in 2010 for tackling global optimization chal-
lenges [14]. According to the literature survey, since its 
creation, this metaheuristic has eight versions that have 
been adopted and applied to diff erent benchmark [15] 
and practical challenges, for example retinal image reg-
istration [16], constrained portfolio optimization [17], 
multilevel image thresholding [18], RFID network plan-
ning problem [19], capacitated p-median problem [20]. 
Another swarm intelligence metaheuristic, that models 
herds of elephants (elephant herding optimization – 
ECHO), emerged in 2015. EHO is known as good NP 
hard problems optimizer with many implementations in 
both domains, benchmark [21], and real-life challenges. 
Some of the EHO’s implementations for the practical 
tasks include: support vector machine (SVM) [22], static 
drone placement problem [23] and localization of sen-
sors with unknown location in wireless sensor networks 
(WSNs) topology [24]. 

Relatively new monarch butterfl y optimization 
(MBO) has been recently proposed by Wang and Deb 
for global benchmark problems [25]. Despite of this 
fact, MBO already has adaptations for practical tasks 
[26] and multi-objective optimization problems [27]. 
Another representative of swarm intelligence algorithm, 
moth serach (MS), that was also proposed by Wang [28], 
qualifi es as the state-of-the-art metaheuristic. Besides 
implementations for the benchmark problems [29], 
[30], many MS’s adaptations for the real-world prob-
lems can be found in the literature survey [31], [32]. 

Besides all above mentioned, other swarm intelli-
gence approaches that are worth of mentioning encom-
pass: seeker optimization algorithm (SOA) [33], cuckoo 
search (CS) [34], [35], [36], bran storm optimization 
(BSO) [37], [38], bat algortithm (BA) [39], [40], and 
state-of-the-art approach for cobinatorial optimization, 
ant colony optimization (ACO) [41].  

3. PARTICLE SWARM OPTIMIZATION FOR 
CONSTRAINED PROBLEMS

Particle swarm optimization (PSO) is well-known 
swarm intelligence approach devised in 1995 by Ken-
nedy and Eberhart [42], [43]. Th e PSO proved to be 
robust and state-of-the-art metaheuristics with many 

implementations and adaptations [44]. In this Section of 
the paper we present our adaptations of this outstanding 
optimizer adapted for tackling constrained optimization 
problems.

In the basic PSO implementation, potential prob-
lem solution (individual in the population) within the 
boundaries of the search space domain is represented 
as particle. Each solution i in the D-dimensional search 
space is defi ned by its position and velocity, denoted as 
xi=(xi1,xi2,xi3,…,xiD) and vi=(vi1,vi2,vi3,…,viD), respectively. 

At the beginning of algorithm’s execution, in the 
initialization phase, all solutions in the population are 
generated randomly within the lower and upper bound-
aries of the search space (see Eqs. (1)-(2)). Aft er random 
initialization, in each iteration of algorithm’s execution, 
the position and velocity of each solution are updated 
using the following expressions [43]:

where the ω denotes the inertia weight that is utilized for 
the purpose of controlling the infl uence of the old veloc-
ity to the new one, c1 and c2 control constants that are 
used for determining the weights of pg and pi. Previously 
best position of the i-th individual in the population is 
denoted as pi, while the pg represents the best previous 
position of solutions in the current iteration. Finally, r1 
and r2 are pseudo-random numbers uniformly gener-
ated in the range [0,1], t is the current iteration, and t+1 
is the next iteration.

By utilizing presented equations (Eq. (4) and Eq. (5)) 
the exploitation and exploration process of the PSO me-
taheuristics is being performed. By adjusting the values 
of c1 and c2 control parameters, the balance (trade-off ) 
between the intensifi cation and diversifi cation is also be-
ing adjusted. If the values of c2 and c2 parameters are too 
high, this balance is shift ed towards exploitation. Other-
wise, if the values of c2 and c2 parameters are too low, the 
trade-off  favours the process of exploration.

According to prevously conducted studies [12], [13], 
[33], in the fi rst iterations of the algorithm’s execution, 
the exploration should be more intensive, due to the as-
sumption that the search process has not yet converged 
to the optimum domain of the search space. However, 
in the later iterations, with the basic assumption that the 

(4)
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promising part of the search domain is found, the power 
of intensifi cation should be enhanced. 

For the sake of better controlling the balance be-
tween exploitation and exploration, in our PSO imple-
mentation, we introduced the limit parameter from the 
ABC metaheuristic. Th e basic idea behind this approach 
can be summarized into one sentence: each solution in 
the population that can not be enahnced in a predefi ned 
number of iterations is being discarded from the popu-
lation and replaced with the pseudo-random solution 
generated within the lower and upper boundaries of the 
search domain. Every time when a particular solution 
could not be improved, the value of its limit parameter 
is incremented. When a value of the limit parameter 
reaches the threshold value (tvalue), this solution is dis-
carded from the population.

One of the greatest challenges in the domain of 
constrained optimization is how to handle constraints. 
Equality constraints could pose serious problem due to 
the fact that they could signifi cantly shrink the feasible 
part of the search space that becomes very small com-
pared to the entire search space. In our PSO implemen-
tation, we replaced the equality constraints by inequality 
by using small violation limit ε > 0 [45]:

Feasibility of the solutions depends on the value 
of violation limit ε. If this value is too low, the search 
process may not fi nd feasible part of the search space. 
Otherwise, if the chosen value for the ε is too high, ob-
tained results may be far from the feasible space. One of 
the best approaches is to adapt dynamic violation limit 
approach, by starting with the large value of violation 
limit in early iterations, and then to gradually decrease 
its value during the course of algorithm’s execution. 

In our PSO implementation for this purpose we used 
the following expression [13], [33]:

where t and t+1 denote the current iteration and next it-
erations, respectively, and dec>1 represents the decreas-
ing  coeffi  cient in each iteration.

In our implementation we perform the selection 
process between old and new solution, aft er utilization 
of the search equations (Eq. (4) and Eq. (5)),  by em-
ploying Deb’s rules [46], [47]. In this way, we make sure 
that the feasible solutions are favoured over infeasible 

solutions, and also that if both solutions, old and new, 
are infeasible, we make sure that the infeasible solution 
that is closer to the feasible part of the search region is 
favoured over other infeasible solution, that is distant 
from the feasible space.

By introducing all described modifi cations in the 
basic PSO version, we devised hybridized constrained 
PSO (HCPSO) metaheuristic. All execution steps of the 
HCPSO are summarized in the pseudo-code given be-
low.

1. Initialize pseudo-random population
2. Evaluate population
3. Set the violation limit  to 1
4.  iter = 1
5.  repeat
6. For every solution in the population, generate 

new solution by using Eq. (4) and Eq. (5)
7. Apply selection between old and new solution 

based on the Deb’s rules [46], [47]
8. For all solutions that can not be improved, incre-

ment the value of the limit parameter
9. Replace all solutions from the population whose 

limit parameter value reach the tvalue. with ran-
domly generated solutions

10. Memorize the best solution obtained so far
11. If the condition  is met, dynamically adjust the  

value by using Eq. (7)
12.  iter = iter +1
13.  until iter = MITER
14. Output the best solution in the population
In the presented pseudo-code, MITER denotes the 

maximum iteration number in one algorithm’s execu-
tion (run).

4. PARAMETER SETUP, EMPIRICAL RESULTS 
AND COMPARATIVE ANALYSIS

In this section of the paper we fi rst show one of the 
well-known constrained engineering benchmarks that 
was used for validation purposes of our proposed ap-
proach. Th en we show HCPSO control parameters ad-
justments, and fi nally we present empirical results along 
with comparative analysis with other state-of-the-art 
metaheuristics tested on the same problem.

(6)

(7)
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Speed reducer design problem

In order to prove robustness, convergence speed 
and solution’s quality of the HCPSO metaheuristic, we 
utilized speed reducer design problem that was fi rstly 
introduced by Golinski [48]. Th e basic objective of this 
problem is to minimize the weights of the speed reducer. 
Visual representation of the speed reducer is given in 
Fig. 1.

Fig. 1. Example of a fi gure caption. (fi gure caption)

Th e speed reducer problem includes seven design 
variables: face width (x1), teeth module (x2), pinion teeth 
number (x3), shaft  between the bearings (x4), fi rst shaft  
length (x5), fi rst shaft  diameter (x6) and the second shaft  
diameter (x7). Moreover, the speed reducer problem in-
corporates eleven inequality constraints. 

Mathematical formulation of the speed reducer 
problem is given in Eqs. (8) – (20).

Subject to:

with parameter’s bounds:

HCPSO Control parameters setup

We adjusted the global HCPSO control parameters 
as follows: number of solutions in the population (N) 
was set to 40, and MITER was set to the value of 750. 
Th ese settings yield to the total number of 30,000 objec-
tive function evaluations in one algorithm’s run (40  750 
= 30,000).

Th e HCPSO local control parameters c1 and c2 were 
both set to the value of 2, while the inertia weight () was 
adjusted to 0.7. For setting the threshold value (tvalue) 
to 19, by using the following equation:

As already stated in the Section II, at the beginning 
of the algorithm’s execution we set  to 1, whose value 
was gradually decreasing during the algorithm’s execu-
tion according to Eq. (7). Th e value of the dec was set 
to 1.002, while the threshold for the  was adjusted to 
0.0001.

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)



SINTEZA 2019
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2019
submit your manuscript | sinteza.singidunum.ac.rs

Optimisation and Modeling 

22

Empirical results and comparative analysis

Comparative analysis was performed between our 
proposed approach HCPSO and society and civiliza-
tion (SCA) metaheuristic, hybridized artifi cial immune 
system with clearing proce dure (AIS-GAc), ABC and 
BA metaheuristics. Results of other approaches for the 
purpose of comparative analysis were taken from [49].

Results of conducted comparative analysis are pre-
sented in the Table I. Th e notation “V” used for some re-
sults indicate that such results are not feasible. From the 
presented comparative analysis, it is clear that HCPSO 

obtains the best value for objective function (w). Results 
reported for the BA metaheuristic are slightly better, but 
violate g5 and g6 constrains, and such are infeasible.

It also should be noted that the SCA and AIS-GAS 
were tested with 54,456 and 36,000 function evaluations 
[50], which is signifi cantly more than 30,000 function 
evaluation that were utilized in tests conducted with 
HCPSO metaheuristic. Th e ABC approach was also 
tested with 30,000 objective function evaluations, while 
the BA metaheuristic utilized only 15,000 evaluations 
[50]. However, the results reported for the BA approach 
are not feasible and cannot be taken into consideration.

Table 1. Simulation Results And Comparative Analysis

Algorithms

SCA AIS-GAC ABC BAV HCPSO

x1 3.50000681 3.5 3.499999 3.5 3.50000001

x2 0.70000001 0.7 0.7 0.7 0.7

x3 17 17 17 17 17

x4 7.32760205 7.3000035 7.3 7.30001 7.30000012

x5 7.71532175 7.7153225 7.8 7.71532 7.71532019

x6 3.35026702 3.3502147 3.350215 3.35021 3.3502145

x7 5.28665450 5.2866545 5.287800 5.28665 5.28665437

g1 −0.073917 −0.07391524 −0.073915 −0.074 −0.07391518

g2 −0.198000 −0.19799852 −0.197999 −0.198 −0.19799853

g3 −0.493501 −0.49917156 −0.499172 −0.499 −0.49917226

g4 −0.904644 −0.90464383 −0.901555 −0.905 −0.9046439

g5 −6.362E−07 −2.451E−08 −2.990E−07 4.195E−06v −3.013E−08

g6 −1.954E−08 −1.938E−08 −6.335E−04 2.534E−05v −2.754E−09

g7 −0.702500 −0.7025 −0.7025 −0.7025 −0.7025

g8 −1.931E−06 0 2.857E−07 0 −9.431E−09

g9 −0.583333 −0.5833333 −0.583333 −0.583 −0.58333333

g10 −0.054889 −0.05132616 −0.051326 −0.051 −0.05132576

g11 −2.333E−07 −3.305E−07 −0.010695 −6.481E−07 −4.315E−08

w 2,994.7442 2,994.4712 2,997.0584 2,994.4671 2,994.470123
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5. CONCLUSION

In this paper we presented implementation of the 
hybridized particle swarm optimization for constrained 
problems. In order to enhance the convergence, and to 
improve the balance between intensifi cation and diver-
sifi cation, we incorporated the limit control parameter 
from the well-known artifi cial bee colony metaheuris-
tic. Th e proposed approach was named hybridized con-
strained particle swarm optimization (HCPSO).

Proposed metaheuristic was tested on standard con-
strained engineering optimization benchmark – speed 
reducer design problem. According to the results of 
comparative analysis with other state-of-the-art opti-
mizers that were tested for the same problem instance, 
and under the equivalent experimental conditions it 
can be concluded that the proposed HCPSO represents 
promising approach for tackling these types of NP hard 
challenges.

 Since many real-world optimization tasks belong to 
this group of problems, the HCPSO will be adapted for 
other problems as part of the future research.
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