
SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

91

Miodrag Živković1*,
Tamara Živković2

1Singidunum University,
Belgrade, Serbia
2Faculty of Electrical Engineering,
University of Belgrade, Serbia

Correspondence:
Miodrag Živković

e-mail:
mzivkovic@singidunum.ac.rs

CHALLENGES IN TESTING OF WEB APPLICATIONS

INTERNET AND CLOUD COMPUTING

Abstract:
We have witnessed a huge expansion of web applications in the last decade.
Traditional desktop applications are slowly losing the pace, as more and
more software solutions are implemented as web applications, with the
backend server and the client access through web browser on their machine.
Web applications today are offering a wide spectrum of public, business and
entertainment services, and they are designed to be used by human users,
which implies certain level of quality and user interaction. Although web
applications are efficient and convenient in most cases, their testing is still
sometimes neglected and performed in inappropriate way. This paper will
present challenges in web applications testing and review testing techniques
and approaches which are considered to be state of the art, with focus on the
techniques observable on the frontend.

Keywords:
web application testing, software testing, black box, front-end, html.

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2018-91-96

1. INTRODUCTION

Software testing in general can be summed as the set of activities per-
formed with the goal of finding errors in software, ensuring that the soft-
ware is behaving as defined in specification. On the other hand, software
testing is also used to build the confidence in the correct behavior of the
software under test, as it can show absence of major bugs and correct
functionality of the software. The actual absence of bugs does not mean
that there is no bugs in the software, as for any nontrivial software it is
not possible to do exhaustive testing. It just shows that the current test
set did not find any bugs. Keeping that in mind, it is of the highest im-
portance that the test set covers the most important use case scenarios
– the actual scenarios how the actual users would use the system after the
deployment. Software testing can be divided into two major groups of
techniques – white box testing and black box testing. Both of those tech-
niques can be applied to all types of applications, including mobile appli-
cations, traditional desktop applications, and of course web applications.

White box testing techniques focus on how software is implemented,
with the access to the code and internal mechanisms of the software com-
ponents under test. These methods are efficient way for validation of
software design and implementation.

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Internet and Cloud Computing

92

Black box testing techniques, on the other hand, do
not assume access to the code, and testing is based on
the actual requirements specification. Focus is on what
software does, more specifically that the functionalities
of implemented software are as specified in the docu-
mentation. The actual software under test is observed
as a black box, and its functionality is tested by giving
different input values and checking whether the output
of the system matches the expected output defined in the
requirement specification.

Web applications, together with the mobile applica-
tions, are the fastest growing software categories today.
They support a large number of activities, and some of
them are critical. For example, banking applications or
medical applications with diagnostics based on the ex-
pert systems are considered critical, as any serious bug
could cause financial loss, or even worse, loss of lives.
Such applications must meet high standards of software
quality. Web applications also bring a set of testing chal-
lenges on their own, as there is a large number of differ-
ent technologies used for backend / frontend develop-
ment. Frontend is usually based on set of technologies
such as HTML, CSS and JavaScript, which are needed
to create responsive and interactive web pages. They
are usually called DHTML (Dynamic HTML), which is
the combination of HTML, JavaScript, and Cascading
Style Sheets (CSS) that will allow user page to change at
runtime and reflect the state of the backend server. On
the other hand, backend can be implemented in large
variety of ways, for example, PHP together with a MS
SQL database, or ASP .NET C# application, or even Java
application in form of JSP. As the result, all parts of web
application must be tested.

Although testing of web application has a lot in
common with traditional desktop applications, there
are some differences which come from some unique
requirements of web applications. Web applications
require testing techniques which will be as flexible as
possible to handle dynamic nature of web applications,
automatic (in best case scenario, not always possible),
and take into account specific problems such as per-
formance of the application under the high load (large
number of concurrent users). Also, it is often required
to verify the behavior of the web application on different
web browsers and different operating systems. Testing
of web applications is standardized by ISTQB authority
[1] In this paper we will focus on the issues visible from
the client side.

2. WEB APPLICATION TESTING
CHALLENGES

Web application testing must use large number of
new technologies, to cover all the components of the
web application. Web applications can be susceptible
to errors because of asynchronous communication, un-
typed JavaScript, event handling, timing/latency, brows-
er dependence and much more. Abilities to observe and
to control the behavior of application are two crucial
aspects of testing. Observability in this aspect is referred
as the difficulty of actually seeing the results of the tests.
Unfortunately, general observability of web applica-
tions is low. When test set is run, sometimes individual
test results can be more or less visible to the software
tester who is performing testing. If all results are visible
to the user on the screen, we say in that case that ob-
servability is high. This is not generally the case for web
applications. Also, web applications generally have low
controllability, due to multiple server side components
which depend on underlying platform, used frameworks
and programming languages. As the result, user inter-
face produced by the backend server, which is usually
HTML, can be generated dynamically in multiple differ-
ent ways. In this paper, we will focus more on the results
visible on the screen on the client side.

Just as a short example, we can observe the behavior
of the page components in different browsers, especially
if the page is written in HTML 5. HTML 5 is the latest
version of HTML standard, and although it is available
for several years now, it is known to still have some limi-
tations with different browsers. Most of the issues are
associated with Microsoft Internet Explorer or Edge, but
there are some issues with older versions of other brows-
ers as well. For example, let us consider standard HTML
5 input form element calendar. On large number of web
applications, it is required to obtain information about
the user’s date of birth, which can be implemented easily
with HTML 5 in the following way:

<form action=”/action_page.php” method=”post”>
Enter your birthday: <input type=”date” name=”bd1”>
</form>

This element is displayed in appropriate way in
Google Chrome or Mozilla Firefox, and also in Micro-
soft Edge (Fig. 1), however, even the latest version of In-
ternet Explorer has problems displaying it (Fig. 2). The
same element is just displayed as simple input text field
in Internet Explorer version 11.

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Internet and Cloud Computing

93

Fig. 1. HTML 5 calendar element in Google Chrome

Fig. 2. HTML 5 calendar element in
Internet Explorer version 11

In this case, if we wanted the same behavior of the
page on all browsers, we would need to implement it in
another way. Even worse, CSS and JavaScript also do not
behave exactly the same on different browsers. In gen-
eral, most of the common cross browser HMTL and CSS
issues are caused by modern features and layout issues,
which some browsers are not capable to show in proper
way. This is actually a very common problem, especially
if we need to support some older browser versions as
well (again, most issues are with older Internet Explorer
versions). Generally speaking, most of the core HTML
and CSS functionalities, such as basic HTML elements,
basic CSS colors and basic text styling would work over
most of the browsers currently available. Problems
generally arise when we want to use some of the newer
HTML 5 and CSS 3 features, such as Flexbox, video/
audio support or CSS grids. Even though some complex
modern HTML elements such as <canvas>, <video> or
<audio> have natural mechanisms for fallbacks, this
does not necessarily mean that those mechanisms are
actually implemented by the developer [2]. Therefore,
it is a necessity to do thorough testing of all supported
browsers, with major focus on Internet Explorer, to
verify that all page components are displayed in an ap-
propriate way, and that any needed fallback is actually
implemented. In fact, fallback in case of <video> ele-
ment would look like on Fig. 3.

Fig. 3. <video> fallback in case it
is not supported by browser

Fallback content is usually added in between open-
ing and closing tags, and browser which does not sup-
port this feature will effectively ignore the element on
the outside, and actually run the nested content. In this
example, for older Internet Explorer versions, video fall-
back to Flash is offered, and even if the Flash player does
not work, simple download link is offered so user can at
least still open and view the content. CSS is even better
at callbacks than HTML, as if browser runs at rule it
does not understand, it will just skip it completely with-
out applying it. Since Internet Explorer is generally the
biggest problem, it is possible to add conditional com-
ments inside HTML syntax, which can then be used to
selectively apply rules to different versions of Internet
Explorer, and the actual syntax is shown in Fig. 4.

Fig. 4. Conditional comments for handling
different versions of IE

This actual block of code will apply specific CSS rules
in case the browser is Internet Explorer 8 or older (ver-
sion less than or equal to IE 8).

Security and robustness of web application is also
of the biggest importance, so implementation of input
validation is a must. It is referring to checking if the user
input inside forms is valid and safe. For example, mali-
cious user could try to insert SQL injection inside form,
targeting the database on the backend server. SQL injec-
tion is targeting vulnerabilities in user input validation,

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Internet and Cloud Computing

94

such as bad filtering of the escape character, and causes
unexpected code execution. If we consider the statement
which is extracting record with the given username from
the table of users:

statement = “SELECT * FROM users WHERE name =
‘” + userName + “’;”

If the userName is entered in the input form on the
client side in a specific way, malicious user can try to
execute SQL code in a way author of the code did not
want. In case userName variable is set to value ‘ or ‘1’=’1,
the following query will come to the database:

SELECT * FROM users WHERE name = ‘’ OR ‘1’=’1’;

Since subexpression ‘1’=’1’ is always true, this query
would actually select all valid usernames from the data-
base. This is why validation of the user input is neces-
sary, and must be done on JavaScript level as the input
sanitization, together with the additional check on the
PHP level for example, before triggering actual query
towards the database.

3. TESTING TECHNIQUES

As discussed in the introduction, both white box and
black box testing techniques can be used when testing
web applications. Some of the traditional techniques are
not suitable for AJAX, and for other technologies there
are also some limitations [3]. We will, however, try to
summarize most frequently used techniques.

White box testing

In traditional software testing, white box testing is
focusing on the actual code and internal structure of the
software system under test. Similarly, when applied to
web applications, we assume knowledge of the internal
structure of the system, and usually structural models
are used. However, it must be noted here that due to
highly dynamic structure of modern web applications,
and presence of several different technologies, white box
techniques are just partially applicable to web applica-
tion as a whole. Of course, each individual component
can be tested on unit or integration level with traditional
white box code coverage techniques. One of the avail-
able structural models is the Navigation model, where
graph is used to represent the web site, with each page
being the node, and every link being the edge. However,
this model does not cover asynchronous behavior and

dynamic changes of the modern web applications. With
this model we cannot observe dynamic changes and the
states of the HTML page which can happen during the
execution.

Another approach is to use traditional white box
code coverage techniques, including control flow test-
ing and data flow testing, adapted for web applications.
Control flow testing is based on creating control flow
graph. Nodes of this graph are statements of the code
executed on the web server, while the edges represent
transfer of control between nodes. This is usually code
and statements from different technologies, such as mix-
ture of HTML, JavaScript, PHP (or different backend
technology such as JSP or .NET), AJAX etc.

Traditional data flow testing when applied to the
web applications is considered as object based data flow
testing [4]. Objects are the data flow information of the
application, and each object contains certain attributes.
This is coupled with structural model and the control
flow graph. The objects are monitored and tests are de-
fined based on creation (definition) of those objects and
their later usage. Again, there are some restrictions, for
example not all requests and responses, or navigation
between the pages can be represented in this model.

Black box testing

As in traditional testing, black box testing of the
web application is completely based on the requirement
specification document, and actual access to the code is
not assumed. In fact, it is not required to check either
code, structure, or any other implementation details of
software under test at all.

The most suitable black box method for web appli-
cations is the Finite State Machine (FSM model). Natu-
rally, this technique is suitable just for software which
behavior can be represented with the finite state, which
is usually the case of the web applications. Model is de-
fined with states, transitions between states, and events
and actions that trigger those transitions. Events are al-
ways triggered with some user input, and actions are
responsible for producing some output. This model is
usually shown with state transition diagram [5]. For ex-
ample, state transition diagram for application which is
performing online shopping, from the client side, would
look like it is shown in Fig. 5 (traditional example in
software testing literature).

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Internet and Cloud Computing

95

Fig. 5. FSM state transition diagram for online shopping

There are several ways of generating test cases based
on the state transition diagram. Criteria for generating
test cases from the state model can be one of the fol-
lowing:

 ◆ State cover – test set must visit every state in dia-
gram at least once during execution

 ◆ Transition coverage (0-switch cover) – test set
must exercise every transition in the diagram at
least once

 ◆ Switch coverage (1-switch cover) – test set must
exercise every possible pair of transitions (se-
quences of two consecutive transitions) in dia-
gram at least once)

 ◆ N-switch cover – test set must exercise every pos-
sible sequence of N + 1 transitions in diagram at
least once

Although every web application can be modeled
with FSM, sometimes it can lead to state space explo-
sion problem. Several methods were proposed to fix
this issue, such as using dependency analysis in model
checking control flow graph [6], or exploiting decision
table as a combinatorial model [7].

Other traditional black box techniques commonly
used in testing web applications are equivalence class
partitioning [8] and boundary values analysis [9]. These
two techniques can be applied when testing forms which
accept user input. For example, let us observe input field
where user should enter his or hers age, and let us as-
sume that, as defined in the specification, user must have

between 18 and 99 years, as shown in Fig. 6. We can
identify three equivalence classes, one legal (age between
18 and 99), and two illegal, (age < 18 and age > 99).
Equivalence classes partitioning is usually coupled with
boundary values analysis, as the most probable place
where developer could make an error is the processing
of the actual border between two equivalence classes. In
this case, for example, tester would need to verify the
behavior of implemented input validation for entered
age 17, 18, 19, 98, 99 and 100, if the stronger border
check is applied.

Fig. 6. Border value analysis for the input fields

Additionally, it must be verified whether the vali-
dation of the input fields is implemented correctly by
checking what happens when unexpected input is en-
tered, such as if random text with characters is entered
in the field which should accept only numbers accord-
ing to the specification. If this validation fails, it is very
possible that the error will be generated at the backend,
or even propagated to the database where it could trig-
ger database error. This validation could be partly done

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Internet and Cloud Computing

96

with the HTML 5 itself, but additional verification and
input validation and sanitization should be done from
the JavaScript side as well, and possibly on the back-
end, before triggering any actual SQL query toward the
database. As discussed earlier, any available input field
should be tested in order to verify that it is not possible
to enter some malicious input such as SQL injection,
which could lead to serious issues with database. This is
especially necessary for any application operating with
sensitive data, which could lead to any privacy data leak,
or financial loss, or in the worst case scenario, even life
loss.

4. CONCLUSION

With the raising popularity of web applications, and
taking into the consideration complexity and number of
different technologies needed to build a web application,
web application testing plays a key role. In this paper, we
focused on the challenges mostly on the frontend side,
which is visible on the client web browser, and easily ac-
cessed by the tester. Even this part of the web application
brings several problems which must be addressed. For
example, FSM is commonly used for black box testing of
web applications, but state explosion must be avoided.
This can be done either by employing additional meth-
ods on the testing side, or by keeping clean and simple
design from the development side, which is not always
possible.

In this paper, we tried to cover similarities and dif-
ferences between traditional approach for testing desk-
top applications, and the needs for testing web applica-
tions. Main conclusion can be summed in the fact that
traditional black box techniques can be used with small
adaptations, but that white box techniques are difficult
to be applied to the web application as a whole. White
box testing is fully dependent on the actual implementa-
tion technologies, and any future technique developed
specially for web applications must adapt to the dynamic
nature of web application and to the fact that web appli-
cation is usually built with several different technologies.

REFERENCES

[1] https://www.istqb.org/references/istqb-web-mo-
bile-apps.html

[2] https://developer.mozilla.org/en-US/docs/Web/
Guide/HTML/HTML5

[3] Marchetto, A., Ricca, F., and Tonella, P. (2008a). A
case study-based compari-son of web testing tech-
niques applied to ajax web applications. Int. Jour-
nal on Software Tools for Technology Transfer,
10(6):477-492.

[4] C. Liu, D.C. Kung, P. Hsia, C. Hsu, Object-based
data flow testing of Web applications, in: Proceed-
inds of the First Asia-Pacific Conference on Quality
Software, IEEE Computer Society Press, Los Alami-
tos (CA), 2000, pp. 7–16.

[5] http://istqbexamcertification.com/what-is-state-
transition-testing-in-software-testing/

[6] Park,S., Kwon,G.: Avoidance of State Explosion Us-
ing Dependency Analysis in Model Checking Con-
trol Flow Model. ICCSA (5) 2006: 905-911

[7] G. A. D. Lucca and A. R. Fasolino, --Testing Web-
based Applications: The State of the Art and Future
Trends|, Information and Software Technology, vol.
48, 2006, pp. 1172-1186.

[8] http://istqbexamcertification.com/what-is-equiva-
lence-partitioning-in-software-testing/

[9] http://istqbexamcertification.com/what-is-bounda-
ry-value-analysis-in-software-testing/

