
SINTEZA 2018 
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

9

Dalibor Marijančević*,
Saša Adamović,
Milan Milosavljević

Singidunum University,  
Belgrade, Serbia

Correspondence: 
Dalibor Marijančević

e-mail: 
dalibor.marijancevic.11@singimail.rs

ONE IMPLEMENTATION OF A PROTOCOL FOR GENERATION 
AND DISTRIBUTION OF CRYPTOGRAPHIC KEYS

INFORMATION SECURITY AND DATA SCIENCE

Abstract: 
This paper discusses a cryptographic protocol for a secure session key gen-
eration, whose design is based on the principles of perfect cipher systems. 
The need for this type of protocol in modern computer networks arises for 
several reasons. The most important ones are associated with a requirement 
for high-level security and a simple implementation (important cryptographic 
steps are executed in a controlled environment). The protocol is described 
in detail, as is its implementation. The paper further examines the protocol’s 
advantages, limitations, as well as its applications.

Keywords: 
key, generation, protocol.

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2018-9-16

1. INTRODUCTION

Perfect forward secrecy - PFS is an imperative for secure communica-
tion. The essence of PFS access is the session key [1]. The usual scheme 
through which the session key is generated is the application of asym-
metric cryptography. However, since we do not know what the future 
brings and whether at some point the factoring of large primes on which 
asymmetric cryptography relies will become trivial, it is necessary to find 
a new way to exchange session keys.

Interesting is the fact that the present is the future of the past, or what 
was impossible to attack 15 years ago, today it can be simply feasible [2]. 
The attacker can be passive, record communication, and wait for a tech-
nology to emerge that will enable them to decrypt the content.

What is described above justifies the need for a protocol that will 
provide a strong session key that does not rely on the assumption that 
there is no feasible attack. This paper will propose a scheme providing 
the specified conditions.

2. OVERVIEW IN THE FIELD OF RESEARCH

Among protocols that employ the password as part of the key mate-
rial the most widely used is the SRP - Secure Remote Password protocol 
[3].



SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Information Security and Data Science

10

The SRP protocol was rolled out as one implementa-
tions of AKE (Asymmetric Key Exchange)[4]. Consid-
ering the then existing Encrypted Key Exchange (EKE) 
platform [5], the author concluded that this is a sym-
metrical protocol, which means that the same element 
needs to be kept in two places. This leads to the situation 
where both parties must be responsible for the exchange 
and prevention of unauthorized access.

Using this approach, he author concluded that it 
would be a better solution if both parties in the com-
munication derive the secret, and then passed it as an 
argument to a hash function in order to generate a 
verifier that would then be forwarded to another par-
ticipant. The verifier needs to be safely guarded against 
the attacker in order to prevent the dictionary attack. 
However, even in the case of compromise, a password 
that corresponds to a given verifier is still required. Such 
a scheme allows the password never to leave the user’s 
environment, meaning it is not distributed via a com-
munication channel.

3. THEORETICAL ELEMENTS

In analyzing the SRP protocol and other similar so-
lutions which use a previously shared secret, we have 
determined that all those come with certain limitations, 
or weak points that can affect the security of the key ex-
change.

One weakness - the user’s password - has already 
been addressed in by the existing implementations.

Another weakness becomes evident during the pro-
cess of random number generation. Even though ran-
dom number generation is executed on the server for 
the most part, some elements of the process take place 
in the app on the user’s end. With that in mind, we have 
identified a need for a protocol that would not delegate 
any part of the process to the user.

The next problem relates to the reliability of asym-
metric cryptography. Although there is still no cracking 
algorithm, it has not been proven that such an algorithm 
does not exist. As in the previous case, the need arises 
for a scheme, that will eliminate the use of such a calcu-
lation method for the session key. In asymmetric cryp-
tography, there is definitely question of extensive CPU 
time which is needed for such operations. It should be 
noted, however, that protocols based on these opera-
tions can be used as a message-protecting shield, so that 
at an early stage of the protocol execution it can be de-
termined whether an active attack has occurred.

The protocol or rather its simulation, which served 
as a demo is a protocol with playing cards [6].

Playing Cards Protocol

Protocol with playing cards is a protocol that uses 
four cards, two pairs of the same rank each. For simplic-
ity, we will use the King and the Queen. The require-
ment is that paired cards are of different colors. Cards 
are shared secretly, but the exchange of key information 
is public.

The protocol begins with the dealing of the cards. 
The protocol assumes that the cards are dealt by an 
individual trusted by all participants. Cards are even 
dealt to the attacker. When cards are dealt legitimate 
participants publicly reveal the colors of their cards. If 
the colors match, it means that both legitimate players 
have different cards. Before the protocol is run, the rule 
is established that if the first participant holds a Queen, 
the key bit is zero, otherwise it is one.

If the colors differ, legitimate participants cannot 
make any definitive conclusions about the cards, while 
the attacker faces this uncertainty every time the colors 
of the cards held by legitimate participants match. In 
case of mismatch, cards are folded and the new round 
begins.

Interpretation of Cards in Bits

In order to use this protocol, cards should be pre-
sented as bits. One of possible implementations is a 
bigram where one bit denotes a color, while the other 
represents the king or queen. In this way, a set of ten bits 
represents five cards.

Card Dealing

The next obstacle is the very act of dealing of the 
cards. Since the assumption of each protocol is that the 
only secret value is the key, the situation presented in 
the protocol is not possible in a real-life scenario. From 
this perspective, it is obvious that the attacker gets all 
the necessary data through the communication channel 
as the cards are dealt. In addition, the protocol assumes 
that there is enough knowledge of one card so that it 
can be decided whether it will be used and what is the 
value of the key bit if a round is taken into account. For 
this reason, we will introduce some minor changes to 
the protocol.



SINTEZA 2018 
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Information Security and Data Science

11

The first change refers to a trusted person who deals 
the cards. This, in our case, will be a server. Assuming 
that the server has access to a source with good entropy, 
in this way, we get cards generated in a random way.

The following change refers to the dealing of the 
cards itself. At this point a user password comes in, or 
any secret value shared between the server and the user 
before the communication commences. Although the 
server has assumed the role of the dealer, it will gener-
ate its own cards only. The most important role of these 
server cards is that they represent random values, which 
will only amplify the entropy of the key. The user’s cards 
represent a previously shared secret. The server sends its 
cards through the communication channel, while both 
participants already have their users’ cards.

The last change pertains to the announcement of 
colors. This is no longer necessary, since both legitimate 
participants already have both sets of cards on them-
selves. The attacker knows what the server cards are, but 
since they do not know the users’ cards and the public 
announcement of color has been removed from the pro-
tocol, there is no way for the attacker to find out how the 
key will be formed.

Protocol Setup

Taking into account all the points described above, 
we can discuss the setup of the protocol.

 ◆ Legitimate participants exchange secrets before 
commencing communication.

 ◆ In every communication, the server will generate 
its cards in a random way.

 ◆ A previously shared secret constitutes users cards .
 ◆ Only server cards are sent via the communication 

channel.
 ◆ Both participants generate the key in their envi-

ronment.
By generating a session key in this way, we have 

avoided the following:
 ◆ Sending previously exchanged secret via a com-

munication channel.
 ◆ The user has no obligation to generate random 

values that are part of the key material.
 ◆ User’s password as a material for the key. Server  

cards, assuming they use the appropriate source, 
increase the key’s entropy.

4. PROTOCOL IMPLEMENTATION

For the implementation of the protocol, it is neces-
sary to consider primarily the keeping of a previously 
exchanged secret, as well as the establishing of com-
munication. Since the primary use of the protocol is to 
generate a secret session key between the server and the 
client, or the client application, we will direct our atten-
tion to such a scenario.

The server side in all scenarios may remain un-
changed, while on the client side this may be a web 
browser or a native application. Although web browser 
is also a native application, the mode it is used for com-
munication with the server is in most cases different. 
The main difference is data storage.

When we use the web browser, the only memory we 
can use comes in form of cookies or local storage. This 
places a limit on the available options, especially when 
the client first reaches out with a request. The server has 
no way of knowing who the user is and it must very 
carefully consider if it will respond. After the first suc-
cessful session, a cookie can be stored in the user’s web 
browser, and the next time the user requests access, the 
server will know who the client is based on the cookie. 
However, cookies may be time-limited. Furthermore, 
web browsers support private sessions, after which all 
communication data is deleted. Finally, the user can de-
lete a cookie.

In the instance of OS access, a native application 
could integrate parameters necessary for the protocol as 
part of the installation. In this case, a previously shared 
secret can be used as a key that the user does not need 
to memorize. This, from the standpoint of entropy, will 
serve better for the session key than the user’s password. 
From this aspect, a native application is considered a 
better solution, but often it is impossible to use them 
because the user still has to install them, and a certain 
number of users will not accept that. Another aspect that 
can reduce the level of security is the implementation 
itself. The scheme in which a secret is kept on the cli-
ent’s operating system must be carefully considered. If 
it is stored as open text, malicious software can acquire 
sufficient privileges and reach the key itself.

Secret Keeping

Here we will primarily discuss how a secret is kept 
on the server’s end. The secret is kept on the server with 
a username and a salt. The salt is necessary to prevent 
password disclosure in case a database with user data 



SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Information Security and Data Science

12

has been compromised. A salt is generated specifically 
for each user. The password and salt are passed together 
as an argument of a hash function. For this process, slow 
algorithms should be used so that the time needed for 
negotiation is extended.

The system can be additionally secured if the salt and 
the result of a hash function are stored in different data-
bases. The result is a previously shared secret and in this 
way we have secured the user’s cards. Now we may face 
a problem that the user does not know the salt. Since 
the salt is not a key, it can be public information. How-
ever, some are of the opinion that the salt should not be 
public information, or that the system will be safer if the 
salt is not public. A compromise is that the server should 
send salt only if the user does not have it. This would 
minimize the risk of revealing the salt.

Use of Shared Secret and Protocol Packet

Let us assume that SHA-512 algorithm is used for the 
hash function. The result of this algorithm is 64 bytes. 
Since the protocol defines cards as a pair of bits, each of 
these bytes will be converted into bits and merged into 
one string. The length of that string N is an important 
parameter of the protocol, since it essentially represents 
the number of cards the user has.

To prevent the attacker from getting the informa-
tion about the length of the string, each packet will have 
512 bits. The server will always generate cards within the 
length of 512 bits, but the protocol will only use the first 
N bits. This feature will be further used to send param-
eters in the first packet which will additionally increase 
the uncertainty of the session key.

It is important to note that that each packet of the 
protocol sent by the server is assembled from random 
bits, and then, if necessary, some bits change depending 
on the needs in the current phase of the protocol.

Protocol Parameters

In order to further add to the uncertainty of the cur-
rent session key, we will introduce several parameters. 
The server sends the protocol parameters in the first 
packet of cards by placing them in positions that are 
immediately after the position representing the length 
of the user’s cards.

The first parameter is the rule on whether the key bit 
is zero or one depending on which card the server or user 
has. We will generate this rule as a random one bit value 
that will determine whether the king represents zero or one.

The next parameter is the key length. AES (Advanced 
Encryption Standard) algorithm is mostly used as an al-
gorithm to encrypt communication with a session key. 
Bearing in mind that AES supports 128, 160, and 256-bit 
keys, a minimum of two bits representing this parameter 
is required, where numbers 0, 1, and 2 in the binary pres-
entation would represent the key length accordingly.

The third parameter refers to the number of rounds. 
If participants in the communication want to hide the 
information on how many rounds is necessary to gener-
ate the key, a third parameter can also be added, which 
will represent the number of packages to be sent after 
key generation, but not considered. This can be achieved 
by setting a rule to always send the same number of 
packets, but this could be considered an unnecessary 
cost for smaller keys.

Initial Packet and Salt

We have already mentioned that the salt can be pub-
lic information, so the server can send a salt to the client 
in its first response. However, if we do not want to dis-
play it in any subsequent key exchange, when the client 
sends a request to the server next time, the server must 
know that the salt is already saved. For this purpose, 
the client, depending on the current state, will gener-
ate one or two random values, one as their challenge to 
the server and the other one as a replacement for a salt 
if necessary. We should bear in mind that one of the 
principles of the protocol is that the client should not 
generate random values that are used as key material, 
so we will not use them for these purposes.

The first situation is that in which the client does not 
have a salt. In this case, it generates two random val-
ues and passes them as an argument to a hash function. 
The first packet will be a user name, a challenge and the 
result of a hash function. When a server receives a mes-
sage, it will pass the challenge and the salt associated 
with the username as the arguments to hash function. 
Since the result will be different, that means that the cli-
ent does not have a saved salt on their end. Thus, the 
first response from the server side on its initial bits will 
contain a salt and will not be used as a cards material.

The other situation is that the client has a salt. Then, 
on the client’s end, one random value is sufficient, which 
will be a challenge, and the result of a hash function will 
be obtained when the challenge and salt are used as ar-
guments. In this way, the server will receive information 
that the client has a salt and the first package will be the 
beginning of dealing the cards.



SINTEZA 2018 
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Information Security and Data Science

13

The challenge sent by the client is used for mutual 
authentication that should verify whether the key is 
properly generated.

File Storage Service

When we considered the weaknesses of asymmetric 
cryptography, we indicated that what is currently im-
penetrable, in the future, with the growth of processing 
power or the application of some new algorithms, can 
become solvable. A passive attacker can record commu-
nication and wait for something to be developed for a 
feasible attack.

Such a scenario proposes a new use for the protocol. 
In the same manner that an attacker can record com-
munication, the server can record encrypted files. In 
this case, the server could have the same information 
as the attacker, that is, it would only know its cards. The 
previously shared secret would only be used for authen-
tication and communication, and another one could be 
used for encryption, but it would be known only to the 
user. The role service would have is to provide a source 
with good entropy in the form of its cards and send it to 
the client. The server, together with the files, would also 
store the appropriate cards. Everything else would take 
place on the client’s end.

This setup poses a problem of salt as an asset that 
increases the uncertainty of the password. The client can 
use the same salt as the one used for key exchange, but 
that is in conflict with the rule that a special salt is used 
for each password, which is in place because the user 
might not be cautious enough and may enter the same 
password as the one used for key exchange. We can infer 
from this that both the salt used for key exchange and 
the salt for encryption should be stored on the server. 
This places responsibility on the user not to use the same 
password for file encryption, if they do not want to al-
low the server to have insight into the key. Under such 
circumstances, the server would be in the same position 
as the attacker who came into possession of the database 
with the user’s data, that is the salt and the result of the 
selected hash function. Another way is that the server 
generates a salt which would be stored on the client’s 
end. However, users expect to be able to access their files 
from different platforms, so this can be a problem from 
the aspect of user experience.

Protocol Flow

Bearing in mind the foregoing points, the flow of the 
protocol is the following:

 ◆ H - selected hash function 
 ◆ R – client’s challenge
 ◆ k – username or any other unique identifier
 ◆ t – a secret
 ◆ s – salt
 ◆ s’ – replacement for the salt
 ◆ n – number of rounds, which depends on the 

currently held cards and the third parameter of 
the protocol

 ◆ K – session key
 ◆ E, D – encryption, decryption with the selected 

algorithm with symmetric key
 ◆ r  - unused bits of server cards
 ◆ Rs – server’s challenge

Client:  

– calculates H(R, s) or H(R, s’)

   -- >(k, H(R, s) / H(R, s’), i)
Server:

– generates first cards and defines protocol parameters

– calculates H(i, s(k)) and compares the result with 
what was sent by the client

– if the comparison is positive, calculates the client 
cards and at the specified place it replaces the bits with  
parameters

   < -- packet(cards, parameters)

– if the comparison is negative, replaces the bits with 
salt 

   < -- packet(cards(salt))
Client:

- depending on the state calculates salt or receives the 
first packet and begins calculating the key

Server:

   < -- packet(cards) * n
Authentication:



SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Information Security and Data Science

14

Server: 

   <-- E(K, H(R, r), Rs)
Client:

- D(E(K, H(R, r), Rs))

   -- >E(K, H(Rs))

Independent Use of the Protocol

Looking at the protocol flow, we see that the user 
presents himself and sends a challenge. All other mes-
sages are sent by the server. If the PKI infrastructure 
is not used together with the protocol, an attacker may 
step in between, alter messages and send their bits, but 
eventually they must send a message encrypted with a 
session key, and this will not be possible.

In case that someone tried to misrepresent the serv-
er, they would be able to get a salt, and only if the web 
browser is used as a client application. Today’s web ser-
vices use different ways to determine if something unu-
sual happened in a given session. If the behavior devi-
ates from the norm, the user will be prompted to change 
the password, and will receive a new salt in the process. 
However, even if such an attack went unnoticed, the salt 
is by definition public information, so it does not repre-
sent a major vulnerability.

If a false request is sent through a native application, 
it is assumed that the client already has a salt and the 
server will not accept a client request that does not con-
tain it. In addition, through the native application, the 
creator has several ways to prevent such a scenario by 
introducing additional keys that will identify the appli-
cation itself and its state.

An Example of a Key Exchange

The password that is used is “alisinatajnalozinka”. 
The result of a hash function is:
-84 -12 -41 28 106 33 -36 94 -122 113 62 37 -82 103 

-124 -55 -48 -125 9 -15 -97 72 51 31 -94 -46 52 -107 -71 
29 -92 -90 25 -1 -80 68 -112 -43 15 -40 -106 61 105 35 
-119 -80 102 113 72 20 32 10 -43 -54 -102 -89 83 122 88 
52 -40 -62 7 6

When the bytes are turned into bits to obtain the cli-
ent cards, the length of client cards is 384.

Here is an example of calculation of the key, where 
the first row represents the client’s cards, the second is 
for server’s cards and the third row is the key.

11 00 11 10 00 10 01 11 10 00
01 01 01 00 00 00 11 00 00 10
-- 1  -- -- 0  -- -- -- -- --

5. SCOPE OF APPLICATION

The scope of application of the protocol can be cat-
egorized based on the technologies or the type of client 
application which is used. The first type is a web brows-
er, the other is a native application.

The protocol we discuss in this paper does not re-
quire any parameters other than the ones defined in the 
specification and as such it can be used for the exchange 
of the session key. The communication between partici-
pants does not reveal much, so the passive attacker can 
only get the username and, if it is the first request, the 
salt. The attacker can also get the username in a differ-
ent way, while the salt is considered public information. 
With this in mind, we should say that the protocol does 
not provide any protection against recording of the traf-
fic. Asymmetric cryptography may further protect such 
communication. When using proxy servers, we place 
our trust in the service provider, so we believe that the 
service provider will not abuse these two pieces of in-
formation.

Web Browser

The advantage of a web browser is that the appli-
cation as such can be used for products from different 
companies. The user just needs to type the address of 
the service he wants to access and the content is avail-
able. Also, if you need to do a specific task, browsers 
support add-ons that can provide functionalities the 
browser vendor has not included in the code. From the 
perspective of security, browser vendors follow the de-
velopment of technologies and protocols and browsers 
are generally updated regularly, so that they can respond 
to threats against security of user data.

However, the advantage that comes with the fact 
that one application is sufficient to use all services, also 
brings some disadvantages. An application that uses the 
browser must use the security protocols that the brows-
er supports and must rely on them. One of the most 
important mechanisms is SOP (Same Origin Policy), 
which prevents requests from being sent towards third-
party resources that are not allowed [7]. The browser 
also takes care of accessing the computer, and it keeps 
separated the data coming from applications in different 



SINTEZA 2018 
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Information Security and Data Science

15

domains, even if they are executed simultaneously. Ad-
ditional protection is offered in that absolutely no access 
is permitted to the file system unless explicitly granted 
by the user for a specific real-time action. Software such 
as Flash Player or Java Applet, through which the ven-
dor grants access to the computer as if it were a native 
application, is gradually phased out, since it represents 
a major security risk to the user. A single flaw in the 
Java programming language relative to SOP and security 
vulnerability in the SSL 3.0 protocol led to the BEAST 
(Browser Exploit Against SSL / TLS) attacks[8] where 
the attacker can decrypt the communication between a 
browser and web server.

That said, it should be noted that the memory the 
browser can use is limited. Therefore, all the values that 
are required for the application to run, some of which 
may be secret, usually come via a communication chan-
nel. This opens the possibility for data leakage.

Considering the above limitations, and in case we 
want to provide a user-friendly interface, we have to 
move forward with a user’s password as a previously 
shared secret. In most cases, this means that the previ-
ously exchanged secret will not have satisfactory entro-
py, and therefore we must implement the steps outlined 
in the protocol to enhance security from this aspect.

As far as the memory is concerned, everything that 
the application has stored in the browser, either in the 
cookie or in the local storage of the browser, can be ei-
ther accidentally or intentionally deleted by the user in 
one move. The browser grants the user full control over 
the content that is stored. Having control is good from 
the point of view of security and malicious software, but 
this also imposes limitations on the useful software.

Native application

Native applications offer a range of options. A key 
with good entropy can be sent at the time of installation 
which, if coupled with a user password, should provide 
good protection. Another benefit is that the application 
could authenticate itself with the server for a specific 
user.

On the other hand, unlike the browser, the user has 
no control of what the application is doing on the com-
puter. Although operating system vendors are striving 
to protect users from malicious applications, the risk is 
much higher than it is for browsers where damage, in 
most cases, cannot occur if the user does not do some-
thing in that regard.

Using Protocol with Asymmetric Cryptography

By using the PKI infrastructure, where the user en-
crypts their first packet with a server public key and then 
the server sends cards encrypted with its secret key, user 
data can be additionally protected. The protocol does 
not have a rule as to whether the server must send all of 
its cards at once or in multiple separate messages. How-
ever, in the scenario where asymmetric cryptography 
is used, the server can generate cards, calculate the key 
and an authentication message, and encode everything 
with its secret key. This would require only one step of 
complex computational asymmetric cryptography op-
erations on both ends.

In this scenario, the attacker could get server cards 
and authentication messages from the server, but with 
that information they could not learn anything else.

Key Exchange Between End Users

In the previous chapter, we discussed the encryp-
tion of files and their storage in a remote location. In 
one setup, the server does not have to know anything 
about the password used as a key material, i.e. it is only a 
source of cards with good entropy. This scenario can be 
used to exchange the key between two users. The proto-
col can be used in two ways. One would be that there is 
no record of the client on the server, and the other that 
there is such an account.

It is assumed that both clients share a common se-
cret. These two clients may also be devices that belong to 
the same user who needs to transfer something from one 
device to the other or to connect them to communicate 
among themselves as is the case with SOHO (Small Of-
fice Home Office) networks or car keys.

A commonality of both approaches is that one of the 
clients generates a challenge and forwards it to another 
client through a channel different from the communica-
tion channel. When the server receives the same chal-
lenge from both ends, it will send the same cards to both 
addresses, so that the clients will use them to generate 
a session key.

If the protocol were to be used for ad hoc commu-
nication, the challenge should be a short sequence. The 
reason is that the other client must manually enter that 
value into the application they will use.



SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Information Security and Data Science

16

Scenario Without User Account

In the scenario without a user account, there is a 
problem of salt and user identification in case when the 
service is used via web browser. In case of a native appli-
cation, all necessary values can be generated and stored 
together with the installation on both ends.

When it comes to the browser, both clients must de-
fine a name in advance by which the server could iden-
tify them. The protocol could be further enhanced by 
asymmetric cryptography, as it would thus protect the 
name and challenge.

The second problem is salt. Although the primary 
role of the salt is to avoid storing a user’s password in 
plain text, in the discussed protocol, the salt serves as a 
value that will enhance the uncertainty of the password. 
In each exchange, the server would have to generate a 
salt and pass it on to the users along with the cards.

Scenario With User Account

With this setup, an initial request is somewhat dif-
ferent. The packet contains everything that the original 
protocol does, and users must also exchange the chal-
lenge. An addition is the username for the communi-
cation. When a server receives both requests, it adds a 
record that defines a link between the two clients, and 
joins the common salt. The salt is further treated as in 
the original protocol.

6. CONCLUSION

In the paper, a protocol for a session key exchange 
is presented in order to achieve perfect forward secrecy. 
The protocol as the key material employs a previously 
shared secret and array or random bits generated by the 
server side. It is not necessary to generate random values 
with satisfactory entropy on the user’s end that would 
be used as a key material. The only random value is the 
challenge that is used at the last stage of the protocol to 
authenticate participants for communication and au-
thorization of messages.

REFERENCES

[1] W. Diffie, P.C. van OOrschot, M.J. Wiener, “Au-
thentication and authenticated key exchanges”, De-
signs, Codes and Cryptography”, Kluwer Academic 
Publishers, vol. 2, pp. 107-125, Jun 1992.

[2] 13 Authors, “Factorization of a 768-bit RSA modu-
lus”, CRYPTO’10 Proceedings of the 30th annual 
conference on Advances in cryptology, Santa Bar-
bara, CA, USA — August 15-19, pp. 333-350, 2010.

[3] T. Wu, “The SRP authentication and key exchange 
system”, 2000. [Online]. Available: https://tools.ietf.
org/html/rfc2945

[4] T. Wu, “The secure remote password protocol”, 
Computer Science Department, Stanford Univer-
sity, 1997

[5] S.M. Bellovin, M. Merritt, “Encrypted key exchange: 
password-based protocols secure against dictionary 
attacks”, IEEE Symposium on research in security 
and privacy, pp. 72-84, 1992

[6] M. Milosavljevic, S. Adamovic, Kriptologija 2, Bel-
grade: Singidunum University, 2014. 

[7] A. Barth, “The Web origin concept”, 2011. [Online]. 
Available: https://tools.ietf.org/html/rfc6454

[8] T. Kurokawa, R. Nojima, S. Moriai, “On the secu-
rity of CBC Mode in SSL3.0 and TLS1.0”, Journal of 
Internet Services and Information Security (JISIS), 
vol. 6, pp. 2-19, 2016


