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Abstract: 
Distributed computations are characterized by a partial order over events: two 
concurrent events at different processes may be re-ordered without changing 
the outcome of the computation. For systems that are composed of so-called 
communication-closed layers, this partial-order argument has been used by 
Elrad and Francez [13] to reduce the reasoning about distributed systems to a 
specific sequential form. We discuss existing techniques for communication-
closed layers, and discuss applications to automated verification of state-of-
the-art distributed systems.
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1. INTRODUCTION  

As more and more people and institutions use services on the Internet 
on a daily basis, and as computers are increasingly used in embedded con-
trol systems of cars, aircraft, and medical devices, our society depends to a 
greater extent on the correct operation of distributed computing systems. 
Many of the applications require us to design fault-tolerant systems.

The classic application domain for fault-tolerant distributed systems 
were safety-critical systems [29] like cars and civil airplanes. In order to 
achieve very high reliability (that is, very low probability of system failure), 
components are replicated, and fault-tolerant distributed algorithms ensure 
that the collection of these components behave as one reliable component.

The advent of data centers and cloud computing over the Internet, led 
to design distributed systems that consists of thousands of commodity 
computers in clouds. Such systems typically pose less severe reliability 
requirements than safety-critical systems. However, the huge number 
of involved com-modity computers means that single components can 
fail very often, and fault tolerance is required as faults become part of 
the normal operation. Hence we see more and more implementations of 
fault-tolerant distributed algorithms [48],[30], [36], [5] for data centers.
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Currently we observe increasing interest in block-
chain technoloqy [37], [16], [22], [4]. Here the need 
for distributed systems comes from the fact that a large 
number of persons, companies, etc., are interested in 
participating in a market place. Also these systems have 
to ensure some sort of fault tolerance. For instance, if 
a majority of the participants are honest, the system 
should work as expected.

Due to the criticality of the mentioned application 
domain, it is crucial to design computer systems in a 
way that ensures that they do not fail. To do so, one 
has to address two challenges: on one hand, we have to 
design means that tolerate partial failure that is outside 
the control of a system designer (such as power outages 
or bit-flips due to radiation), and on the other hand, 
find design faults (bugs) in order to fix them. The for-
mer is classically addressed by means of replication and 
fault-tolerant distributed algorithms, while the latter is 
dealt with by rigorous system and software engineering 
methods.

It is well-understood that fault tolerance in distrib-
uted systems is a non-trivial challenge. Classic results in 
distributed computing theory show that under general 
assumptions on the environment, fault tolerance is not 
achievable [32], [18], [40]. Hence, fault-tolerant distrib-
uted algorithms are based on quite involved assump-
tions on the environment, such as type of fault behavior, 
message delays, processing speeds. Consequently, that 
a distributed algorithm actually is correct rests on quite 
intricate properties of the considered systems. There is 
a quite elaborate theory [34] on how to prove correct-
ness math-ematically. However, mathematical proofs 
(including those involving interactive theorem provers) 
require huge manual effort and a lot of time. Thus, in 
order to keep pace with the development of new dis-
tributed systems these ideas should be transferred into 
rigorous software engineering tools.

While methods such as static analysis, model check-
ing, and SMT solving made impressive progress in the 
verification of sequential code, the required abstractions 
for distributed systems have not found their way into 
verification tools. The non-determinism due to faults, 
process step interleaving, and uncertain message delays 
lead to a combinatorial explosion of the state space and 
the execution space, which renders many existing veri-
fication methods a priori ineffective. At the same time, 
it is not well-understood in general what features of 
distributed systems would permit effective verification. 
The knowledge of some features would be an impor-
tant guideline for “design for verification”: From the  

beginning of the software life-cycle, a designer could fol-
low guidelines that provide the promise that the result-
ing distributed system may be verified effectively.

In this paper we will discuss one such feature, which 
we find promising, namely designing processes with 
communication-closed layers [13]. We will show that 
for fault-tolerant systems, communication-closed layers 
allows us to do automated reasoning based on reduc-
tion theorems [33], [13], [6], which drastically reduces 
the execution space. We will discuss the peculiarities of 
distributed computations in Section II and the idea of 
reductions in Section III. In Section IV we review some 
existing results of reductions for communication-closed 
layers. Based on this, we motivate in Section V that in 
the context of fault-tolerant distributed systems, com-
munication-closed layers should be a central design and 
verification paradigm in design for verification.

2. DISTRIBUTED COMPUTATIONS AND 
PARTIAL ORDERS

Given a sequential piece of code, once the input is 
fixed, the control flow of the code with the evaluation of 
variables defines a single execution (if we ignore a lot of 
details in modern compiler and processor design, such 
as, code optimization, caching, etc.). In sharp contrast, 
a distributed system consists of multiple processes each 
with its local control flow. In asynchronous systems, 
processes run independently, so that already all possi-
ble interleavings of steps of the distributed processes in-
duce a typically huge execution space rather than a sin-
gle execution. Additionally, these processes coordinate 
or communicate, either by means of shared memory or 
message passing. There exist effective verification tech-
niques for shared memory. However, we are interested 
in message passing systems in this note. They require 
different verification techniques as they follow a differ-
ent concurrency paradigm.

As already observed by Lamport [31] distributed 
compu-tations thus induce a partial order — the so-
called happened before relation — of events in a distrib-
uted systems. Roughly speaking the send event of a mes-
sage m happens before the receive event of m, and for 
each process p, local events at p are ordered according 
to the temporal order of their occurence. The happens 
before relation is the transitive closure of these relations 
for all messages and all processes. As a result, if in an 
execution events e1 and e2 happend directly one after the 
other at two distinct processes p and q, respectively, e1 

and e2 may still be independent (not ordered according 
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to happened before). That is, neither the local control 
flows, nor the messages impose an order of e1 and e2 so 
that swapping e1 and e2 leads to a different execution, 
which (i) entails the same happened before relation, and 
(ii) is locally indistinguishable for processes p and q (and 
all other processes in the system).

We observe that asynchrony leads to a huge execu-
tion space. This, in turn, makes understanding and rea-
soning about the execution space hard, both for humans 
and computers. An important idea to handle this com-
plexity is to structure the reasoning along the induced 
partial orders. Due to the mentioned partial order and 
indistinguishability arguments, the happened before 
relation can be understood as an equivalence relation 
between executions: all executions that have the same 
happened before relation over their events can be seen 
as falling into the same class. For many interesting 
specification, it is sufficient to check a representative 
execution from each class. Here we distinguish — very 
roughly — two approaches.

In so-called partial-order reduction, while search-
ing the exe-cution space, executions are pruned that are 
“similar” to ones searched before [21], [46], [38]. In so-
called reduction one proves a priori that every execution 
can be represented by an execution of specific form [33], 
[13]. Then verification procedures only need to consider 
executions of these specific forms.

3. REDUCTIONS

To the best of our knowledge, Lipton [33] was the 
first to highlight reduction as a proof method for con-
current systems. In his theory, processes execute se-
quences of statements, for instance, one process may be 
the sequence of statements A, B, C, and another process 
may be the sequence X, Y . Then, concurrent executions 
are interleaved sequences of state-ments. For example, 
A, X, B, Y, C is an execution, as well as X, A, B, C, Y . In 
the latter execution, the sequence A, B, C is said to be 
executed atomically.

He considered the classic semaphore operation P (s) 
and V (s), for semaphore s. Then if p’s code is P (s), B, V 
(s), he proves that all executions can be reduced to ones 
where P (s), B, V (s) occurs as uninterupted (atomic) 
block: Intu-itively, if an execution is interleaved with 
an event 'A at a different process 'p , that is, P (s), 'A 
, B, V (s), then Lipton proves that P (s) can always be 
moved to the right, that is, 'A , P (s), B, V (s) is also 
an execution with the mentioned block. Similarly, all V  

operations are so-called left movers. Thus, Lipton’s re-
duction consists in idetifying large blocks of local code 
between a P operation and its matching V operation 
that can be “moved” together. Then for verification (of 
reachability properties) it is sufficient to consider the 
executions where these blocks are executed atomically.

Lipton’s reduction is widely used in verification of 
con-current systems. However, the idea of moving can 
also be used to generate other atomic steps. For instance, 
recently Konnov et al. [27], [28] considered symmetric 
systems of specific threshold automata, that is, processes 
that execute the same local code. Then if a given num-
ber f of processes, each performs event A one after the 
other, that is, the execution is A, A, . . . , A, this can be 
represented by a single (accelerated) transition f · A. As 
a result, moving the As together leads to “shorter” ex-
ecutions, and indeed Konnov et al. prove that for safety 
and liveness it is sufficient to consider executions whose 
length can be bounded. While being very effective, this 
method a priori can be applied only to a restricted class 
of threshold automata.

In this paper we advocate for a classic reduction by 
Elrad and Francez [13], which they originally formu-
lated in the context of CSP [23] (Communicating Se-
quential Processes). Consider a parallel composition of 
processes Pi , for 1 ≤ i ≤ n, that is, S = P1 || P2 || . . . || Pn . 
Further assume that each process Pi is a sequential com-
position of layers 1

iL ; 2
iL ; . . . ; k

iL . Then they assume the 
following property: if for two processes i and j, the layers 

a
iL  and b

jL  communicate (have a synchronized event in 
CSP), then a = b. In other words, layers communicate 
only with layers of the same number, that is, are com-
munication-closed. If we consider the parallel composi-
tions of layers Lk = 1

kL  || 2
kL  || . . . || k

nL , then the central 
result — proved with a partial-order argument —is that 
instead of analyzing S, it is sufficient to analyze the se-
quential compositon of layers Sl = L1; L2; . . . Lk. Observe 
that Sl has considerably fewer interleavings than S. For 
instance, in S events of layer 2 at process p, 2

pL , might 
occur before events of layer 1 at process q (that is, 1

qL ), 
while in Sl this cannot be the case.

4. COMMUNICATION-CLOSED LAYERS AS 
VERIFICATION PARADIGM

A. Reasoning about the sequential core

Chou and Gafni [10] introduce a design principle 
called stratified decomposition that is intimately related 
to communication-closed layers, but is formalized in 



SINTEZA 2018 
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Blockchain and Distributed Systems

134

I/O automata, and targets distributed algorithms. They 
discuss in detail that complex distributed systems are 
designed according to an implicit sequential algorithm, 
whose executions are then tailored towards scenarios 
a designer has anticipated. How-ever, proving invari-
ants of the asynchronous system typically ignores the 
sequential algorithm. To address this in [10], Chou and 
Gafni prove reduction theorems and apply them to the 
design of a minimum-weight spanning tree distributed 
algorithm. With a similar motivation, Stomp and Ro-
ever [42] formulate a principle (along with soundness 
proofs) for distributed programs that can be split up into 
subtasks that can be performed sequentially from a logi-
cal viewpointt, although in “reality” these tasks may be 
performed concurrently. In Section V we will discuss a 
similar idea for the verification of fault-tolerant distrib-
uted system implementations.

B. Communication-closure as proof strategy

We present a subjective selection of work that consid-
ers communication-closed layers that appears closest re-
lated to the verification approach we are advocating for.

a) Proving the closure: The result in [13] states that if 
a CSP program is communication-closed then the veri-
fication can be reduced to verification of a simpler CSP 
program. Given that, the first obvious question is how 
to check that a given CSP program is communication 
closed. This is ad-dressed in [20]. The paper shows that 
for a stronger notion of closure, the closure of the layer 
can be proved in terms of the layer itself. The basic strat-
egy is to show that violations of communication closure 
are not reachable. We will discuss in Section V that the 
problem of proving closure also appears in verification 
of asynchronous code of fault-tolerant distributed sys-
tems.

b) Safe composition: Engelhardt and Moses [14], [15] 
analyze conditions under which distributed programs (or 
lay-ers) can be composed, if processes communicate by 
message passing. The considered composition is paral-
lel for different processes, but every process executes the 
composed programs sequentially. The main goal is to find 
a binary relation between programs, such that if every two 
adjacent programs in a compositon are in this relation, 
then safety of all programs analyzed in isolation implies 
safety of the composition. They consider different com-
munication semantics: communication over asynchro-
nous order-preserving (FIFO) channels where messages 
might be duplicated or lost in [14], and reliable non-du-
plicating channels that are not order-preserving in [15].

A notion of a program Q fitting after a program P has 
been introduced in [14]. This means that the two pro-
grams do not interfere with each other in the composi-
tion. They give an efficient algorithm for deciding whether 
a program Q fits after P , and show that if every program 
in the composition fits after the previous one, then every 
program is communication closed. If Q does not fit af-
ter P , they introduce so-called separators that allow safe 
composition of P and Q, and describe their construction.

In [15] they introduce a notion of sealing. We say 
that a program Q seals a program P if neither Q nor any 
other following program can interfere with P. Usually, 
if Q seals P, then Q is composed of smaller programs 
among which each fits after the previous one. Efficient 
algorithms are given for (i) testing whether a program 
seals another one, and (ii) constructing seals of a class 
of programs. If in a composition every program seals 
the previous one, then every program is communication 
closed and therefore safety of the composition follows 
from analysis of individual programs.

c) Probabilistic Systems: A probabilistic version of 
communication-closed layers was introduced in [43] 
and later extended to abstract probabilistic automata in 
[41]. They show that executions of probabilistic autom-
ata can be reduced to ones structured in layers. By tak-
ing a specific randomized mutual exclusion algorithm 
as example, they show that signifi-cantly fewer locations 
have to be considered in the verification process, which 
speeds up probabilistic model checking.

C. Communication-closure as design principle

As discussed in Section IV-A, communication-
closed layers consitute a link between the sequential core 
of a distributed algorithm, and the phenomena induced 
by concurrency and asynchrony. In the following ap-
proaches it has been used to design distributed systems.

a) Algebraic approach: Following the original work 
by Elrad and Francez [13] the concept of layering has 
been studied in the context of process calculi [39], [26], 
[19]. Fokkinga, Poel, and Zwiers [19] discuss com-
pleteness of the communication-closed layers law with 
respect to the layering operator •, where P • Q can be 
described as parallel compo-sition of P and Q with the 
restriction that if action q of Q depends on an action p 
of P , then p must precede q. If all actions of Q depend 
on all actions of P, the layer operator degenerates to se-
quential composition P ; Q. Using algebraic methods, 
parallel programs are derived from sequential ones in 
[39] similar to the approach in [10]. The theory is ex-
tended to timed systems in [26]
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b) Epistemic logic: Behavior of a distributed algo-
rithm can be described using epistemic logic. Changes 
in systems, that is, transitions, correspond to changes 
in knowledge of processes. In [25] we see how every 
knowledge modification of a set of processes can be im-
plemented as a layer. These layers are then composed 
using so-called layer composition. This means that if 
two actions belong to different layers and if the actions 
interfere with each other, then they have to be executed 
in the corresponding order of the layers.

If a specification is given in epistemic logic, and can 
be split into simpler knowledge transitions, then we can 
obtain layers for each of the transitions. Layer composi-
tion of these layers represents the implementation sat-
isfying the behavior from the specification. Moreover, 
these layers are formulated carefully such that their layer 
composition can be transformed to a distributed imple-
mentation, using communication closed laws.

D. Distributed Algorithms in the Heard-of Model

The HO-Model [9] was originally introduced as a 
computational model, that is, to model and prove cor-
rect fault-tolerant consensus algorithms for benign 
faults. Later it has been generalized to value faults [2] 
(e.g., Byzantine). The central idea is to capture round-
based distributed algorithms that basically evolve like 
lock-step synchronous systems; while faults and time-
outs are modeled by messages not being received. In this 
way the central concept is the HO set, where HO(p, r) 
contains the processes from which process p has heard 
of — has received messages from — in round r. While 
the original work was in the context of distributed al-
gorithms theory, at the latest with the introduction of a 
reduction theorem [6] it showed its potential as verifica-
tion framework for system implementations. The obser-
vation in [6] is that in asynchronous executions of HO 
Algorithms, order of message arrival does not influence 
the local state transition. For these round-based distrib-
uted algorithms it is only relevant which message for 
the current round have been received by the time a pro-
cess does the computation step of that round. Thus, on 
top of a reduction similar to [13] (that brings together 
all events of a round), all send events can be merged 
into a global send event, and receive events into a global 
receive event, and all computation events into a global 
computation event.

This allows us to analyze sequential global executions 
where the non-determinism due to faults, timing, etc. 
is captured in the non-determinism in the HO sets of  

received messages. Such systems can be effectively veri-
fied with different methods. In the literature, we already 
find results using the following methods: a domain-spe-
cific consensus logic with decision procedures [11], [12], 
and methods to infer invariants [47], cut-off results [35], 
for model checking abstraction-based model checking 
[1], bounded model checking [45], [44], interactive the-
orem provers and finite state model checking [7], [8].

5. DESIGN FOR VERIFICATION

As discussed in Section IV-D, there is a selection of 
effective verification approaches using communication 
closed layers and the HO Model. In principle this can 
be exploited in two ways. First, the distributed system 
should be imple-mented using domain-specific languag-
es [12], [3] that provide sufficient structure for verifi-
cation. Second, an asynchronous implementation of a 
distributed system should be given as input to the veri-
fication process. For fault-tolerant distributed systems 
it is quite likely that (at least large parts of the asynchro-
nous code) are communication closed. For instance, it 
is known [17] that to ensure reliable communication 
on top of lossy links, one needs to encode information 
equivalent to a unique message tag (in order to know 
whether the message is stale or should still be consid-
ered). As fault-tolerant distributed systems solve some 
coordination problems (e.g., atomic broadcast) that 
have reliable communication as sub-problem, these sys-
tems thus have unique message tags, which are in turn a 
strong indicator for communication-closed rounds. For 
instance, a message tag can be understood as the layer 
number of the layer it belongs to.

Typically, parts of the code that take care of recov-
ering a crashed process are not communication-closed. 
We suggest that verification of such functionalities 
should be done inde-pendently from verification of the 
normal operation.

A. Design in Domain-specific Language

Psync is a domain-specific language [12] for express-
ing consensus algorithms in the HO model. The code 
of this language serves as input to (i) verification and 
(ii) compilation into an (asynchronous) runtime. Argu-
ments similar to the reductions from [13], [6] ensure 
that the results of the verification apply to the asynchro-
nous code. While the code is verified to be always safe, 
for liveness, the compiled code has to implement specific 
communication predicates. Adapting implementations 
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of communication predicates [24] to different networks, 
and measuring and improving the performance of these 
implementations are interesting research challenges.

B. Asynchronous Code

In general, asynchronous code for distributed sys-
tems needs not be communication closed. As mentioned 
above, for instance, the result of [17] suggests that if the 
code implements a fault-tolerant service (such as, state 
machine replication), it is quite likely that the code is 
communication closed. Automatically detecting wheth-
er this is the case, is a research challenge. However, with 
suitable user-provided code annotations, we conjecture 
that (i) it can be checked effectively, and (ii) the asyn-
chronous code can be automatically translated into the 
HO framework, and verified with the methods discussed 
in Section IV-D. From this verification, we can then in-
fer the communication predicates required for liveness. 
These predicates are implemented in asynchronous code 
(on top of networks that provide suitable timing guaran-
tees). Verifying that the asynchronous code implements 
the required communication predicates in realistic set-
tings, is also a challenge.

6. CONCLUSIONS

We discussed the concept communication-closed 
layers that has been originally introduced in the CSP 
framework by Elrad and Francez. They already observed 
that (i) it can be used for formal program verification 
as well as systematic construction of programs and (ii) 
their approach is not limited to CSP. Indeed, it applies to 
many distributed systems that are characterized by par-
tial orders. For instance, Chou and Gafni [10] introduced 
stratified decomposition for message passing systems. 
While these concepts have been studied in the literature, 
many related questions are still research challenges:

 ◆ In Section IV-B we discussed several proof tech-
niques for communication-closed layers. Some of 
them already come with efficient decision proce-
dures. It is interesting to implement these tech-
niques in verification tools and evaluate how well 
they perform on realistic benchmarks.

 ◆ The design principles from Section IV-C could 
give good guidelines how to design future systems. 
Moreover, they come with an interesting theory 
which may include ideas and concepts that can be 
used to design verification procedures.

 ◆ The Heard-of Model discussed in Section IV-D 
allows us to analyze fault-tolerant distributed 
algorithms with communication-closed layers. 
Extending this reasoning from theoretical con-
sensus algorithms to practical distributed systems 
is a challenge, which can have huge impact on the 
correctness of critical computer systems.

In the context of the Heard-of Model, we discussed 
in Section V our ideas for design and verification of dis-
tributed systems. From these ideas we obtain the follow-
ing immediate questions:

 ◆ How to effectively provide the round structure 
of the Heard-of Model along with the required 
communication predicates in large distributed 
systems?

 ◆ Given asynchronous code, how to check whether 
it is communication closed?

Addressing these topics is crucial in order to exploit 
the important concept of communication-closed layers 
in practice. We conjecture that it will lead to powerful 
tools for automated verification of state-of-the-art dis-
tributed systems.
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