
SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

131

Cezara Dr a goi1,
Marijana Lazić2,
Josef Widder2*

1INRIA / ENS Paris,
Paris, France
2TU Wien,
Vienna, Austria

Correspondence:
Josef Widder

e-mail:
widder@forsyte.tuwien.ac.at

COMMUNICATION-CLOSED LAYERS AS PARADIGM FOR
DISTRIBUTED SYSTEMS: A MANIFESTO

BLOCKCHAIN AND DISTRIBUTED SYSTEMS

Abstract:
Distributed computations are characterized by a partial order over events: two
concurrent events at different processes may be re-ordered without changing
the outcome of the computation. For systems that are composed of so-called
communication-closed layers, this partial-order argument has been used by
Elrad and Francez [13] to reduce the reasoning about distributed systems to a
specific sequential form. We discuss existing techniques for communication-
closed layers, and discuss applications to automated verification of state-of-
the-art distributed systems.

Keywords:
computer-aided verification, reduction, fault-tolerant distributed systems,
formal methods.

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2018-131-138

1. INTRODUCTION

As more and more people and institutions use services on the Internet
on a daily basis, and as computers are increasingly used in embedded con-
trol systems of cars, aircraft, and medical devices, our society depends to a
greater extent on the correct operation of distributed computing systems.
Many of the applications require us to design fault-tolerant systems.

The classic application domain for fault-tolerant distributed systems
were safety-critical systems [29] like cars and civil airplanes. In order to
achieve very high reliability (that is, very low probability of system failure),
components are replicated, and fault-tolerant distributed algorithms ensure
that the collection of these components behave as one reliable component.

The advent of data centers and cloud computing over the Internet, led
to design distributed systems that consists of thousands of commodity
computers in clouds. Such systems typically pose less severe reliability
requirements than safety-critical systems. However, the huge number
of involved com-modity computers means that single components can
fail very often, and fault tolerance is required as faults become part of
the normal operation. Hence we see more and more implementations of
fault-tolerant distributed algorithms [48],[30], [36], [5] for data centers.

 Supported by: the Austrian Science Fund (FWF) through the National Research
Network RiSE (S11403 and S11405), project PRAVDA (P27722), and Doctoral
College LogiCS (W1255-N23); and by the Vienna Science and Technology Fund
(WWTF) through project APALACHE (ICT15-103).

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Blockchain and Distributed Systems

132

Currently we observe increasing interest in block-
chain technoloqy [37], [16], [22], [4]. Here the need
for distributed systems comes from the fact that a large
number of persons, companies, etc., are interested in
participating in a market place. Also these systems have
to ensure some sort of fault tolerance. For instance, if
a majority of the participants are honest, the system
should work as expected.

Due to the criticality of the mentioned application
domain, it is crucial to design computer systems in a
way that ensures that they do not fail. To do so, one
has to address two challenges: on one hand, we have to
design means that tolerate partial failure that is outside
the control of a system designer (such as power outages
or bit-flips due to radiation), and on the other hand,
find design faults (bugs) in order to fix them. The for-
mer is classically addressed by means of replication and
fault-tolerant distributed algorithms, while the latter is
dealt with by rigorous system and software engineering
methods.

It is well-understood that fault tolerance in distrib-
uted systems is a non-trivial challenge. Classic results in
distributed computing theory show that under general
assumptions on the environment, fault tolerance is not
achievable [32], [18], [40]. Hence, fault-tolerant distrib-
uted algorithms are based on quite involved assump-
tions on the environment, such as type of fault behavior,
message delays, processing speeds. Consequently, that
a distributed algorithm actually is correct rests on quite
intricate properties of the considered systems. There is
a quite elaborate theory [34] on how to prove correct-
ness math-ematically. However, mathematical proofs
(including those involving interactive theorem provers)
require huge manual effort and a lot of time. Thus, in
order to keep pace with the development of new dis-
tributed systems these ideas should be transferred into
rigorous software engineering tools.

While methods such as static analysis, model check-
ing, and SMT solving made impressive progress in the
verification of sequential code, the required abstractions
for distributed systems have not found their way into
verification tools. The non-determinism due to faults,
process step interleaving, and uncertain message delays
lead to a combinatorial explosion of the state space and
the execution space, which renders many existing veri-
fication methods a priori ineffective. At the same time,
it is not well-understood in general what features of
distributed systems would permit effective verification.
The knowledge of some features would be an impor-
tant guideline for “design for verification”: From the

beginning of the software life-cycle, a designer could fol-
low guidelines that provide the promise that the result-
ing distributed system may be verified effectively.

In this paper we will discuss one such feature, which
we find promising, namely designing processes with
communication-closed layers [13]. We will show that
for fault-tolerant systems, communication-closed layers
allows us to do automated reasoning based on reduc-
tion theorems [33], [13], [6], which drastically reduces
the execution space. We will discuss the peculiarities of
distributed computations in Section II and the idea of
reductions in Section III. In Section IV we review some
existing results of reductions for communication-closed
layers. Based on this, we motivate in Section V that in
the context of fault-tolerant distributed systems, com-
munication-closed layers should be a central design and
verification paradigm in design for verification.

2. DISTRIBUTED COMPUTATIONS AND
PARTIAL ORDERS

Given a sequential piece of code, once the input is
fixed, the control flow of the code with the evaluation of
variables defines a single execution (if we ignore a lot of
details in modern compiler and processor design, such
as, code optimization, caching, etc.). In sharp contrast,
a distributed system consists of multiple processes each
with its local control flow. In asynchronous systems,
processes run independently, so that already all possi-
ble interleavings of steps of the distributed processes in-
duce a typically huge execution space rather than a sin-
gle execution. Additionally, these processes coordinate
or communicate, either by means of shared memory or
message passing. There exist effective verification tech-
niques for shared memory. However, we are interested
in message passing systems in this note. They require
different verification techniques as they follow a differ-
ent concurrency paradigm.

As already observed by Lamport [31] distributed
compu-tations thus induce a partial order — the so-
called happened before relation — of events in a distrib-
uted systems. Roughly speaking the send event of a mes-
sage m happens before the receive event of m, and for
each process p, local events at p are ordered according
to the temporal order of their occurence. The happens
before relation is the transitive closure of these relations
for all messages and all processes. As a result, if in an
execution events e1 and e2 happend directly one after the
other at two distinct processes p and q, respectively, e1

and e2 may still be independent (not ordered according

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Blockchain and Distributed Systems

133

to happened before). That is, neither the local control
flows, nor the messages impose an order of e1 and e2 so
that swapping e1 and e2 leads to a different execution,
which (i) entails the same happened before relation, and
(ii) is locally indistinguishable for processes p and q (and
all other processes in the system).

We observe that asynchrony leads to a huge execu-
tion space. This, in turn, makes understanding and rea-
soning about the execution space hard, both for humans
and computers. An important idea to handle this com-
plexity is to structure the reasoning along the induced
partial orders. Due to the mentioned partial order and
indistinguishability arguments, the happened before
relation can be understood as an equivalence relation
between executions: all executions that have the same
happened before relation over their events can be seen
as falling into the same class. For many interesting
specification, it is sufficient to check a representative
execution from each class. Here we distinguish — very
roughly — two approaches.

In so-called partial-order reduction, while search-
ing the exe-cution space, executions are pruned that are
“similar” to ones searched before [21], [46], [38]. In so-
called reduction one proves a priori that every execution
can be represented by an execution of specific form [33],
[13]. Then verification procedures only need to consider
executions of these specific forms.

3. REDUCTIONS

To the best of our knowledge, Lipton [33] was the
first to highlight reduction as a proof method for con-
current systems. In his theory, processes execute se-
quences of statements, for instance, one process may be
the sequence of statements A, B, C, and another process
may be the sequence X, Y . Then, concurrent executions
are interleaved sequences of state-ments. For example,
A, X, B, Y, C is an execution, as well as X, A, B, C, Y . In
the latter execution, the sequence A, B, C is said to be
executed atomically.

He considered the classic semaphore operation P (s)
and V (s), for semaphore s. Then if p’s code is P (s), B, V
(s), he proves that all executions can be reduced to ones
where P (s), B, V (s) occurs as uninterupted (atomic)
block: Intu-itively, if an execution is interleaved with
an event 'A at a different process 'p , that is, P (s), 'A
, B, V (s), then Lipton proves that P (s) can always be
moved to the right, that is, 'A , P (s), B, V (s) is also
an execution with the mentioned block. Similarly, all V

operations are so-called left movers. Thus, Lipton’s re-
duction consists in idetifying large blocks of local code
between a P operation and its matching V operation
that can be “moved” together. Then for verification (of
reachability properties) it is sufficient to consider the
executions where these blocks are executed atomically.

Lipton’s reduction is widely used in verification of
con-current systems. However, the idea of moving can
also be used to generate other atomic steps. For instance,
recently Konnov et al. [27], [28] considered symmetric
systems of specific threshold automata, that is, processes
that execute the same local code. Then if a given num-
ber f of processes, each performs event A one after the
other, that is, the execution is A, A, . . . , A, this can be
represented by a single (accelerated) transition f · A. As
a result, moving the As together leads to “shorter” ex-
ecutions, and indeed Konnov et al. prove that for safety
and liveness it is sufficient to consider executions whose
length can be bounded. While being very effective, this
method a priori can be applied only to a restricted class
of threshold automata.

In this paper we advocate for a classic reduction by
Elrad and Francez [13], which they originally formu-
lated in the context of CSP [23] (Communicating Se-
quential Processes). Consider a parallel composition of
processes Pi , for 1 ≤ i ≤ n, that is, S = P1 || P2 || . . . || Pn .
Further assume that each process Pi is a sequential com-
position of layers 1

iL ; 2
iL ; . . . ; k

iL . Then they assume the
following property: if for two processes i and j, the layers

a
iL and b

jL communicate (have a synchronized event in
CSP), then a = b. In other words, layers communicate
only with layers of the same number, that is, are com-
munication-closed. If we consider the parallel composi-
tions of layers Lk = 1

kL || 2
kL || . . . || k

nL , then the central
result — proved with a partial-order argument —is that
instead of analyzing S, it is sufficient to analyze the se-
quential compositon of layers Sl = L1; L2; . . . Lk. Observe
that Sl has considerably fewer interleavings than S. For
instance, in S events of layer 2 at process p, 2

pL , might
occur before events of layer 1 at process q (that is, 1

qL),
while in Sl this cannot be the case.

4. COMMUNICATION-CLOSED LAYERS AS
VERIFICATION PARADIGM

A. Reasoning about the sequential core

Chou and Gafni [10] introduce a design principle
called stratified decomposition that is intimately related
to communication-closed layers, but is formalized in

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Blockchain and Distributed Systems

134

I/O automata, and targets distributed algorithms. They
discuss in detail that complex distributed systems are
designed according to an implicit sequential algorithm,
whose executions are then tailored towards scenarios
a designer has anticipated. How-ever, proving invari-
ants of the asynchronous system typically ignores the
sequential algorithm. To address this in [10], Chou and
Gafni prove reduction theorems and apply them to the
design of a minimum-weight spanning tree distributed
algorithm. With a similar motivation, Stomp and Ro-
ever [42] formulate a principle (along with soundness
proofs) for distributed programs that can be split up into
subtasks that can be performed sequentially from a logi-
cal viewpointt, although in “reality” these tasks may be
performed concurrently. In Section V we will discuss a
similar idea for the verification of fault-tolerant distrib-
uted system implementations.

B. Communication-closure as proof strategy

We present a subjective selection of work that consid-
ers communication-closed layers that appears closest re-
lated to the verification approach we are advocating for.

a) Proving the closure: The result in [13] states that if
a CSP program is communication-closed then the veri-
fication can be reduced to verification of a simpler CSP
program. Given that, the first obvious question is how
to check that a given CSP program is communication
closed. This is ad-dressed in [20]. The paper shows that
for a stronger notion of closure, the closure of the layer
can be proved in terms of the layer itself. The basic strat-
egy is to show that violations of communication closure
are not reachable. We will discuss in Section V that the
problem of proving closure also appears in verification
of asynchronous code of fault-tolerant distributed sys-
tems.

b) Safe composition: Engelhardt and Moses [14], [15]
analyze conditions under which distributed programs (or
lay-ers) can be composed, if processes communicate by
message passing. The considered composition is paral-
lel for different processes, but every process executes the
composed programs sequentially. The main goal is to find
a binary relation between programs, such that if every two
adjacent programs in a compositon are in this relation,
then safety of all programs analyzed in isolation implies
safety of the composition. They consider different com-
munication semantics: communication over asynchro-
nous order-preserving (FIFO) channels where messages
might be duplicated or lost in [14], and reliable non-du-
plicating channels that are not order-preserving in [15].

A notion of a program Q fitting after a program P has
been introduced in [14]. This means that the two pro-
grams do not interfere with each other in the composi-
tion. They give an efficient algorithm for deciding whether
a program Q fits after P , and show that if every program
in the composition fits after the previous one, then every
program is communication closed. If Q does not fit af-
ter P , they introduce so-called separators that allow safe
composition of P and Q, and describe their construction.

In [15] they introduce a notion of sealing. We say
that a program Q seals a program P if neither Q nor any
other following program can interfere with P. Usually,
if Q seals P, then Q is composed of smaller programs
among which each fits after the previous one. Efficient
algorithms are given for (i) testing whether a program
seals another one, and (ii) constructing seals of a class
of programs. If in a composition every program seals
the previous one, then every program is communication
closed and therefore safety of the composition follows
from analysis of individual programs.

c) Probabilistic Systems: A probabilistic version of
communication-closed layers was introduced in [43]
and later extended to abstract probabilistic automata in
[41]. They show that executions of probabilistic autom-
ata can be reduced to ones structured in layers. By tak-
ing a specific randomized mutual exclusion algorithm
as example, they show that signifi-cantly fewer locations
have to be considered in the verification process, which
speeds up probabilistic model checking.

C. Communication-closure as design principle

As discussed in Section IV-A, communication-
closed layers consitute a link between the sequential core
of a distributed algorithm, and the phenomena induced
by concurrency and asynchrony. In the following ap-
proaches it has been used to design distributed systems.

a) Algebraic approach: Following the original work
by Elrad and Francez [13] the concept of layering has
been studied in the context of process calculi [39], [26],
[19]. Fokkinga, Poel, and Zwiers [19] discuss com-
pleteness of the communication-closed layers law with
respect to the layering operator •, where P • Q can be
described as parallel compo-sition of P and Q with the
restriction that if action q of Q depends on an action p
of P , then p must precede q. If all actions of Q depend
on all actions of P, the layer operator degenerates to se-
quential composition P ; Q. Using algebraic methods,
parallel programs are derived from sequential ones in
[39] similar to the approach in [10]. The theory is ex-
tended to timed systems in [26]

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Blockchain and Distributed Systems

135

b) Epistemic logic: Behavior of a distributed algo-
rithm can be described using epistemic logic. Changes
in systems, that is, transitions, correspond to changes
in knowledge of processes. In [25] we see how every
knowledge modification of a set of processes can be im-
plemented as a layer. These layers are then composed
using so-called layer composition. This means that if
two actions belong to different layers and if the actions
interfere with each other, then they have to be executed
in the corresponding order of the layers.

If a specification is given in epistemic logic, and can
be split into simpler knowledge transitions, then we can
obtain layers for each of the transitions. Layer composi-
tion of these layers represents the implementation sat-
isfying the behavior from the specification. Moreover,
these layers are formulated carefully such that their layer
composition can be transformed to a distributed imple-
mentation, using communication closed laws.

D. Distributed Algorithms in the Heard-of Model

The HO-Model [9] was originally introduced as a
computational model, that is, to model and prove cor-
rect fault-tolerant consensus algorithms for benign
faults. Later it has been generalized to value faults [2]
(e.g., Byzantine). The central idea is to capture round-
based distributed algorithms that basically evolve like
lock-step synchronous systems; while faults and time-
outs are modeled by messages not being received. In this
way the central concept is the HO set, where HO(p, r)
contains the processes from which process p has heard
of — has received messages from — in round r. While
the original work was in the context of distributed al-
gorithms theory, at the latest with the introduction of a
reduction theorem [6] it showed its potential as verifica-
tion framework for system implementations. The obser-
vation in [6] is that in asynchronous executions of HO
Algorithms, order of message arrival does not influence
the local state transition. For these round-based distrib-
uted algorithms it is only relevant which message for
the current round have been received by the time a pro-
cess does the computation step of that round. Thus, on
top of a reduction similar to [13] (that brings together
all events of a round), all send events can be merged
into a global send event, and receive events into a global
receive event, and all computation events into a global
computation event.

This allows us to analyze sequential global executions
where the non-determinism due to faults, timing, etc.
is captured in the non-determinism in the HO sets of

received messages. Such systems can be effectively veri-
fied with different methods. In the literature, we already
find results using the following methods: a domain-spe-
cific consensus logic with decision procedures [11], [12],
and methods to infer invariants [47], cut-off results [35],
for model checking abstraction-based model checking
[1], bounded model checking [45], [44], interactive the-
orem provers and finite state model checking [7], [8].

5. DESIGN FOR VERIFICATION

As discussed in Section IV-D, there is a selection of
effective verification approaches using communication
closed layers and the HO Model. In principle this can
be exploited in two ways. First, the distributed system
should be imple-mented using domain-specific languag-
es [12], [3] that provide sufficient structure for verifi-
cation. Second, an asynchronous implementation of a
distributed system should be given as input to the veri-
fication process. For fault-tolerant distributed systems
it is quite likely that (at least large parts of the asynchro-
nous code) are communication closed. For instance, it
is known [17] that to ensure reliable communication
on top of lossy links, one needs to encode information
equivalent to a unique message tag (in order to know
whether the message is stale or should still be consid-
ered). As fault-tolerant distributed systems solve some
coordination problems (e.g., atomic broadcast) that
have reliable communication as sub-problem, these sys-
tems thus have unique message tags, which are in turn a
strong indicator for communication-closed rounds. For
instance, a message tag can be understood as the layer
number of the layer it belongs to.

Typically, parts of the code that take care of recov-
ering a crashed process are not communication-closed.
We suggest that verification of such functionalities
should be done inde-pendently from verification of the
normal operation.

A. Design in Domain-specific Language

Psync is a domain-specific language [12] for express-
ing consensus algorithms in the HO model. The code
of this language serves as input to (i) verification and
(ii) compilation into an (asynchronous) runtime. Argu-
ments similar to the reductions from [13], [6] ensure
that the results of the verification apply to the asynchro-
nous code. While the code is verified to be always safe,
for liveness, the compiled code has to implement specific
communication predicates. Adapting implementations

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Blockchain and Distributed Systems

136

of communication predicates [24] to different networks,
and measuring and improving the performance of these
implementations are interesting research challenges.

B. Asynchronous Code

In general, asynchronous code for distributed sys-
tems needs not be communication closed. As mentioned
above, for instance, the result of [17] suggests that if the
code implements a fault-tolerant service (such as, state
machine replication), it is quite likely that the code is
communication closed. Automatically detecting wheth-
er this is the case, is a research challenge. However, with
suitable user-provided code annotations, we conjecture
that (i) it can be checked effectively, and (ii) the asyn-
chronous code can be automatically translated into the
HO framework, and verified with the methods discussed
in Section IV-D. From this verification, we can then in-
fer the communication predicates required for liveness.
These predicates are implemented in asynchronous code
(on top of networks that provide suitable timing guaran-
tees). Verifying that the asynchronous code implements
the required communication predicates in realistic set-
tings, is also a challenge.

6. CONCLUSIONS

We discussed the concept communication-closed
layers that has been originally introduced in the CSP
framework by Elrad and Francez. They already observed
that (i) it can be used for formal program verification
as well as systematic construction of programs and (ii)
their approach is not limited to CSP. Indeed, it applies to
many distributed systems that are characterized by par-
tial orders. For instance, Chou and Gafni [10] introduced
stratified decomposition for message passing systems.
While these concepts have been studied in the literature,
many related questions are still research challenges:

 ◆ In Section IV-B we discussed several proof tech-
niques for communication-closed layers. Some of
them already come with efficient decision proce-
dures. It is interesting to implement these tech-
niques in verification tools and evaluate how well
they perform on realistic benchmarks.

 ◆ The design principles from Section IV-C could
give good guidelines how to design future systems.
Moreover, they come with an interesting theory
which may include ideas and concepts that can be
used to design verification procedures.

 ◆ The Heard-of Model discussed in Section IV-D
allows us to analyze fault-tolerant distributed
algorithms with communication-closed layers.
Extending this reasoning from theoretical con-
sensus algorithms to practical distributed systems
is a challenge, which can have huge impact on the
correctness of critical computer systems.

In the context of the Heard-of Model, we discussed
in Section V our ideas for design and verification of dis-
tributed systems. From these ideas we obtain the follow-
ing immediate questions:

 ◆ How to effectively provide the round structure
of the Heard-of Model along with the required
communication predicates in large distributed
systems?

 ◆ Given asynchronous code, how to check whether
it is communication closed?

Addressing these topics is crucial in order to exploit
the important concept of communication-closed layers
in practice. We conjecture that it will lead to powerful
tools for automated verification of state-of-the-art dis-
tributed systems.

REFERENCES

[1] Benjamin Aminof, Sasha Rubin, Ilina Stoilkovska,
Josef Widder, and Florian Zuleger. Parameterized
model checking of synchronous dis-tributed algo-
rithms by abstraction. In VMCAI, pages 1–24, 2018.

[2] Martin Biely, Bernadette Charron-Bost, Antoine
Gaillard, Martin Hutle, Andr´e Schiper, and Josef
Widder. Tolerating corrupted communication. In
PODC, pages 244–253, 2007.

[3] Martin Biely, Pamela Delgado, Zarko Milosevic,
and Andr´e Schiper. Distal: A framework for im-
plementing fault-tolerant distributed algo-rithms.
In DSN, pages 1–8, 2013.

[4] Ethan Buchman. Tendermint: Byzantine fault tol-
erance in the age of Blockchains. Master’s thesis,
University of Guelph, 2016.

[5] Mike Burrows. The chubby lock service for loosely-
coupled distributed systems. In OSDI, Berkeley, CA,
USA, 2006. USENIX Association.

[6] Mouna Chaouch-Saad, Bernadette Charron-Bost,
and Stephan Merz. A reduction theorem for the
verification of round-based distributed algorithms.
In RP, volume 5797 of LNCS, pages 93–106, 2009.

[7] Bernadette Charron-Bost, Henri Debrat, and Ste-
phan Merz. Formal verification of consensus al-
gorithms tolerating malicious faults. In SSS, pages
120–134. Springer, 2011.

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Blockchain and Distributed Systems

137

[8] Bernadette Charron-Bost and Stephan Merz. For-
mal verification of a consensus algorithm in the
heard-of model. Int. J. Software and Informatics,
3(2-3):273–303, 2009.

[9] Bernadette Charron-Bost and Andre´ Schiper. The
heard-of model: com-puting in distributed sys-
tems with benign faults. Distributed Computing,
22(1):49–71, 2009.

[10] Ching-Tsun Chou and Eli Gafni. Understanding
and verifying distributed algorithms using stratified
decomposition. In PODC, pages 44–65, 1988.

[11] Cezara Dra goi, Thomas A. Henzinger, Helmut
Veith, Josef Widder, and Damien Zufferey. A log-
ic-based framework for verifying consensus algo-
rithms. In Kenneth L. McMillan and Xavier Rival,
editors, VMCAI, pages 161–181. Springer, 2014.

[12] Cezara Dra goi, Thomas A. Henzinger, and Damien
Zufferey. Psync: a partially synchronous language
for fault-tolerant distributed algorithms. In POPL,
pages 400–415, 2016.

[13] Tzilla Elrad and Nissim Francez. Decomposition of
distributed programs into communication-closed
layers. Sci. Comput. Program., 2(3):155–173, 1982.

[14] Kai Engelhardt and Yoram Moses. Safe composi-
tion of distributed programs communicating over
order-preserving imperfect channels. In IWDC,
pages 32–44, 2005.

[15] Kai Engelhardt and Yoram Moses. Causing com-
munication closure: safe program composition with
reliable non-fifo channels. Distributed Computing,
22(2):73–91, 2009.

[16] Andy Extance. The future of cryptocurrencies: Bit-
coin and beyond. Nature, 526, 2015. http://dx.doi.
org/10.1038/526021a.

[17] Alan Fekete and Nancy A. Lynch. The need for headers:
An impossi-bility result for communication over unreli-
able channels. In CONCUR, pages 199–215, 1990.

[18] Michael J. Fischer, Nancy A. Lynch, and M. S. Pater-
son. Impossibility of distributed consensus with one
faulty process. J. ACM, 32(2):374–382, April 1985.

[19] Maarten Fokkinga, Mannes Poel, and Job Zwiers.
Modular completeness for communication closed
layers. In CONCUR, pages 50–65, 1993.

[20] Rob Gerth and Liuba Shrira. On proving communi-
cation closedness of distributed layers. In FSTTCS,
pages 330–343, 1986.

[21] Patrice Godefroid. Using partial orders to improve
automatic verification methods. In CAV, volume
531 of LNCS, pages 176–185, 1990. GOS.

[22] Distributed ledger technology: beyond block chain. A
report by the UK Government Chief Scientific Adviser.
GS/16/1, 2016. https://www.gov.uk/government/publi-
cations/distributed-ledger-technology-blackett-review.

[23] C. A. R. Hoare. Communicating sequential pro-
cesses. Commun. ACM, 21(8):666–677, 1978.

[24] Martin Hutle and Andre´ Schiper. Communication
predicates: A high-level abstraction for coping with
transient and dynamic faults. In DSN, pages 92–101,
2007.

[25] Wil Janssen. Layers as knowledge transitions in
the design of distributed systems. In TACAS, pages
238–263, 1995.

[26] Wil Janssen, Mannes Poel, Job Zwiers, and Qiwen
Xu. Layering of real-time distributed processes. In
FTRTFT, pages 393–417, 1994.

[27] Igor Konnov, Marijana Lazi´c, Helmut Veith, and
Josef Widder. Para2: Parameterized path reduction,
acceleration, and SMT for reachability in threshold-
guarded distributed algorithms. Formal Methods in
System Design, 51(2):270–307, 2017.

[28] Igor V. Konnov, Marijana Lazic, Helmut Veith, and
Josef Widder. A short counterexample property for
safety and liveness verification of fault-tolerant dis-
tributed algorithms. In POPL, pages 719–734, 2017.

[29] Hermann Kopetz and G¨unter Gr¨unsteidl. TTP – a
protocol for fault-tolerant real-time systems. IEEE
Computer, 27(1):14–23, 1994.

[30] Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahl-
in, Allen Clement, and Edmund L. Wong. Zyzzyva:
Speculative Byzantine Fault Tolerance. ACM Trans.
Comput. Syst., 27(4):7:1–7:39, 2009.

[31] Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[32] Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine generals problem. ACM Trans. Pro-
gram. Lang. Syst., 4(3):382–401, 1982.

[33] Richard J. Lipton. Reduction: A method of proving
properties of parallel programs. Commun. ACM,
18(12):717–721, 1975.

[34] Nancy Lynch. Distributed Algorithms. Morgan
Kaufman, 1996.

[35] Ognjen Maric, Christoph Sprenger, and David A.
Basin. Cutoff Bounds for Consensus Algorithms. In
CAV, pages 217–237, 2017.

[36] Iulian Moraru, David G. Andersen, and Michael
Kaminsky. There is more consensus in egalitarian
parliaments. In SOSP, pages 358–372, 2013. http://
doi.acm.org/10.1145/2517349.2517350.

[37] Satoshi Nakamoto. Bitcoin: A peer-to-peer elec-
tronic cash system, 2008. https://bitcoin.org/bit-
coin.pdf.

[38] Doron Peled. All from one, one for all: on model
checking using representatives. In CAV, volume 697
of LNCS, pages 409–423, 1993.

SINTEZA 2018
INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND DATA RELATED RESEARCH

Sinteza 2018
submit your manuscript | sinteza.singidunum.ac.rs

Blockchain and Distributed Systems

138

[39] Mannes Poel and Job Zwiers. Layering techniques
for development of parallel systems. In CAV, pages
16–29, 1993.

[40] Nicola Santoro and Peter Widmayer. Time is not
a healer. In STACS, volume 349 of LNCS, pages
304–313, 1989.

[41] Arpit Sharma and Joost-Pieter Katoen. Layered
reduction for abstract probabilistic automata. In
ACSD, pages 21–31, 2014.

[42] Frank A. Stomp and Willem P. de Roever. A princi-
ple for sequential reasoning about distributed algo-
rithms. Formal Asp. Comput., 6(6):716–737, 1994.

[43] Mani Swaminathan, Joost-Pieter Katoen, and
Ernst-R¨udiger Olderog. Layered reasoning for
randomized distributed algorithms. Formal Asp.
Comput., 24(4-6):477–496, 2012.

[44] Tatsuhiro Tsuchiya and Andre´ Schiper. Using
bounded model checking to verify consensus al-
gorithms. In Distributed Computing, 22nd Interna-
tional Symposium, DISC 2008, Arcachon, France,
September 22-24, 2008. Proceedings, pages 466–480,
2008.

[45] Tatsuhiro Tsuchiya and Andre´ Schiper. Verifica-
tion of consensus algorithms using satisfiability
solving. Distributed Computing, 23(5-6):341–358,
2011.

[46] Antti Valmari. Stubborn sets for reduced state space
generation. In Advances in Petri Nets 1990, volume
483 of LNCS, pages 491–515. Springer, 1991.

[47] Klaus von Gleissenthall, Nikolaj Bjørner, and An-
drey Rybalchenko. Cardinalities and Universal
Quantifiers for Verifying Parameterized Systems.
In PLDI, pages 599–613, 2016.

[48] Apache ZooKeeper. Web page. http://zookeeper.
apache.org/.

