
SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

137

Miloš Jovanović1,
Nikola Rančić1,
David Davidović2,
Dragan Mitić3

1Singidunum University,
Department for postgraduate studies
32 Danijelova Street, Belgrade, Serbia,
2 Union University,
Faculty of Computer Science,
Knez Mihajlova 6/VI, Belgrade, Serbia
3Metropolitan University
Faculty of Information Technology,
Tadeuša Košćuška 63, Belgrade, Serbia

Correspondence:
Miloš Jovanović

e-mail:
mjovanovic@openlink.rs

ON MITIGATION OF MODERN CYBERCRIME THREATS

CRYPTOGRAPHY AND SECURITY

Abstract:
As the infrastructure that humans heavily rely upon grows is dependent on
modern technology and the Internet, the damage that can be done by exploiting
vulnerabilities in these systems becomes more significant and worrisome. The
extent of these threats’ possible impact cannot be overstated, as the amount
of sensitive information stored in information systems and the actions that
they are permitted to perform have been continuously heightening since
the beginning of the information age. We present a review of representative
examples of security incidents that had put a large number of such systems at
risk of abuse, with many of them having withstood documented exploitation
“in the wild”. We analyze the circumstances that lead to the presence of these
security threats, as well as the way they were handled in terms of disclosure
and urgent fixes to the affected software. Finally, we also suggest methods
which could have possibly prevented these vulnerabilities or lowered their
attack surface if they had been applied timely.

Key words:
cybercrime, information security, vulnerability mitigation.

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2016-137-142

1. BACKGROUND

As Christ (2002) points out, even almost 15 years ago, the growth
of the Internet (more precisely, the metric considered is the total count
of reachable web servers on publicly accessible IP ranges), exponential
in nature, presented unique challenges to the technology underlying it.
Today, the communication standards and protocols used at the time are
long superseded by their newer versions or solutions that are completely
redesigned from the ground up, which is only natural for quickly evolv-
ing technology that needs to keep pace with the explosion of its use. The
same holds for software used as the backbone of these communications:
from network drivers that provide advanced routing features to web and
e-mail servers operating at the top of the OSI networking model (ISO/
IEC 7498-1:1994). Some notable examples include:

 ◆ Protocols and standards:
- HTTP/1.0, the first iteration of the Hypertext Transfer Proto-

col, has been abandoned in favor of HTTP/1.1 which is now
the dominant method of serving web pages on the Internet.
HTTP/1.1 is, in turn, being built upon and improved with the
introduction of efforts such as Google’s SPDY (Chromium

SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

Cryptography and security

138

Project 2009) and the recently standardized
HTTP/2 (Belshe et al., 2015) which is, as of the
time of writing, supported by 6.7% of the top 10
million websites by popularity (W3Techs 2016a).

- Plain TCP as an unencrypted stream trans-
port protocol for WAN communication is
largely being abandoned in favor of protocols
providing authenticity and confidentiality of
the transmitted communication. These pro-
tocols themselves have gone through a large
number of iterations, many of them because
of identified security flaws. These include,
among others, SSLv3 (Freier et al. 2011) and
TLS, whose current standardized version is
TLSv1.2 (Dierks and Rescorla 2008).

- HTML, CSS and JavaScript, the standards
used for development of website front-ends,
have undergone possibly the most significant
changes of all, mainly because of the constant
demand for more immersive and advanced
web experiences by consumers, companies
and enthusiasts alike. Among these, the most
recent iterations are HTML5 (W3C 2014),
CSS3 and ECMAScript 6 (ECMA 2015). It is
important to note that for the former two, the
version number is more of a formal nature, as
new features are constantly being added and
refined by means of feature proposals, brows-
er adoption, and, finally, standardization.

 ◆ Software:
- Networking drivers and routing strategies

used by operating systems running on servers
and on embedded routers, firewalls and other
networking-capable devices have undergone
heavy improvement in order to adapt to higher
throughput and responsiveness requirements
without the need for heavily increasing the
needed resources.

- The landscape of HTTP server market share,
once unanimously led by Apache (which still
leads with over 50% of total usage), is now sig-
nificantly more fragmented, with newer tech-
nology (most notably the Nginx web server)
taking up more than 30% of the total amount
(W3Techs 2016b).

- E-mail servers, CMS solutions, server monitor-
ing, analysis and deployment tools, and many
others used today bear no resemblance to the
technology comparably used in the past.

It is thus evident that the requirement of fast-paced
evolution and iterative improvements, also reflected in
recent trends within software engineering itself, such as
agile software development (Cohen et al. 2003) exists
and dictates much of the development within this field.
However, such a steep rate of innovation leaves a lot of
space for mistakes and insufficient quality assurance of
these types of products.

Wall (2007) suggests, and the authors agree, that the
types of crime brought about by the information age
present a more persistent and worrying threat than is per-
ceived by many entities, most significantly, the organiza-
tions and individuals that develop and maintain software
and standards needed to keep the rate of technological
advancement constant or growing, and at the same time
keep that software reasonably secure and immune to a
wide range of security exploits.

Nevertheless, it is clear that the industry has mecha-
nisms in place to appropriately deal with the existence
and mitigation of such threats, but the level of adoption
and enforcement of those mechanisms still has room for
improvement, all in the interest of minimizing risk for
consumers and organizations relying on these software
systems for personal, business, financial or other needs.

2. VULNERABILITIES IN THE RECENT YEARS

As the topic of cybercrime is more popular than ever
before among technology journalists, hobbyists, privacy
advocates, security researchers, and other groups, it is
of no surprise that high-profile security vulnerabilities
garner much attention in the public. Below is given a
brief and, unfortunately, incomplete list of some more
heavily publicized and threatening instances of such
oversights.

CVE-2014-0160 (Heartbleed)

A discussion touching on these issues cannot be com-
plete without first mentioning one of the most signifi-
cant and publicly known software security issues in the
recent history of computing: CVE-2014-0160, or more
commonly (and memorably) known as Heartbleed or
the Heartbleed bug.

CVE-2014-0160 is a bug in OpenSSL, a software li-
brary aiming to provide a complete solution for imple-
menting SSL/TLS protocols mentioned earlier in this
article, both on the server and client side. OpenSSL, at the
highest level, supports transparent secure communica-

SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

Cryptography and security

139

tion between endpoints on a network where an adversary
might be able to passively capture or actively alter the
traffic (for a more in-depth description of the security
guarantees these protocols make, refer to the relevant
RFCs by the IETF). To achieve this goal, OpenSSL has
had to provide many other features: it includes a library
implementing a vast array of cryptographic primitives
(ranging from symmetric block cipher and elliptic curve
cryptography implementations to secure key exchange
protocols) and support for parsing, verification and ma-
nipulation of X.509 certificates, among others. Bearing
this in mind, it is not surprising that OpenSSL is a big
library with many separate organizational units interact-
ing in complex ways.

The root cause was a failure of code that dealt with
packets regarding the TLS heartbeat extension to ex-
plicitly check if the advertised size of a byte string in a
packet matched its real size. This effectively lead to an
out-of-bounds memory read and subsequent disclosure
of this information to the attacker, meaning that software
using vulnerable OpenSSL versions would leak contents
of arbitrary memory locations, leading to possibly dis-
astrous scenarios (MITRE 2014a). The OpenSSL project
was informed of the issue beforehand and had supplied
a fix for the bug before it was disclosed to the public.

As a vast majority of web servers use OpenSSL as
their library of choice for implementing HTTPS (HTTP
through SSL/TLS) support, the impact of this bug was
extremely high (Durumeric et al., 2014) so high, in fact,
that it spawned forks of OpenSSL such as LibreSSL (by
OpenBSD developers) and BoringSSL (by Google) that
aim to trim down OpenSSL’s codebase and employ other
methods of reducing the risk of such issues in the future.

CVE-2014-6271 (Shellshock or the Bash bug)

A vulnerability comparable to Heartbleed in scope
and impact is surely CVE-2014-6271, which has also
had considerable media exposure and thus gained the,
among the public perhaps more recognizable, nickname
of Shellshock or the Bash bug.

GNU bash (Bourne-again shell) is a Unix shell and
language first released in 1989, as a replacement to the
then-dominant but non-free Bourne shell. A shell has
been an ubiquitous component of almost all Unix-based
systems from the beginnings of Unix - it is used as the
basic text-based user-system interface, a script language
and a “surrogate process” capable of spawning new pro-
cesses in a precisely defined environment. The latter use
plays a key role on the discussed vulnerability, as there

are very few nontrivial programs that do not spawn the
default shell at some point, and GNU bash, being the
default shell on a lot of systems, presents an attractive
and widely critical attack surface.

The bug is caused by a flaw in the parsing logic of
GNU bash, whereby specially crafted and non-sanitized
environment variables could cause arbitrary code execu-
tion in the context of the user and process spawning the
shell: namely, the feature of function definition within
environment variables could be abused to execute code
regardless of whether or not the function is actually called
(MITRE, 2014c). The GNU project was responsibly in-
formed and had supplied a fix before the knowledge of
the bug was made public.

Some web servers (those using CGI, a dated tech-
nology for dynamically generated web content that is
still being used), e-mail clients and similar software did
rely on the default shell for part of their functionality
and supplied it with user-provided input, which led to
a direct remote code execution vulnerability. The count
of publicly accessible and servers vulnerable to this issue
was considerable (Delamore and Ko, 2015).

Other examples

As a thorough analysis of other vulnerabilities is be-
yond the scope of this article, some examples which were
not as publicized and whose impact was not as high, but
nonetheless appropriately illustrate the nature of con-
temporary security-critical software bugs, will be given
in more compact form.

 ◆ CVE-2016-0800, dubbed the DROWN attack by
its creators, uses an SSLv2 and TLS enabled server
to perform a cross-protocol attack that retrieves
the plaintext of passively collected communica-
tion between the server and a user. It achieves
this by using the SSLv2 endpoint as a Bleichen-
bacher padding oracle in order to unmask ses-
sion keys negotiated with the TLS endpoint and a
victim, and also relies on a previously known bug
in OpenSSL to speed up the attack. According to
the authors, more than 20% of tested hosts were
vulnerable at the time of disclosure (Aviram et
al., 2016; MITRE, 2016).

 ◆ CVE-2015-0235, also known as GHOST, is a
buffer overflow bug in glibc, the most widely used
implementation of the C standard library, which
almost every computer program directly or indi-
rectly relies upon on modern systems. The bug
was located inside a function whose task was to

SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

Cryptography and security

140

perform network address lookups, and as such
exposed almost all software that used the network
in some way to risk. Qualys, the company that
discovered the bug, claims that they have created
a proof-of-concept exploit that uses this vulner-
ability to remotely execute arbitrary code via
Exim, a popular e-mail server (MITRE, 2015). It
is worth noting that the exploit in question was
never made public.

 ◆ CVE-2014-3153, a serious vulnerability interest-
ing for both its impact and difference from the
ones previously mentioned, is a privilege esca-
lation exploit within the Linux kernel where a
non-privileged attacker could gain privileged ac-
cess to a system, abusing a bug in the futex (fast
user-space mutex) subsystem of the kernel where a
paused privileged worker thread could be made to,
by manipulating its stack, transfer execution to ar-
bitrary locations when woken up (MITRE, 2014b).

3. MITIGATION

When looking at these vulnerabilities—subjectively—
in hindsight, it would appear reasonable to believe that
they are caused by carelessness on part of the developers.
The steps to exploit most of them are not complex and
are well within the budget or knowledge of any com-
petent computer programmer or security researcher.
However, these kinds of mistakes do happen in some
quantity regardless of the amount of care or expertise of
the development team or individual. Thus, it also seems
reasonable for programmers to expect that there are the
ways to of early discovery (before vulnerable code is re-
leased) and that tools and workflows they use should do
their best in order to promote safe coding practices and
prevent or minimize the impact of such issues.

In that spirit, we have identified some key areas which
can possibly lead to minimization of these types of threats.
Worthy of note is that it is exactly these kinds of threats
that can be and are used, as has been demonstrated by
Wall (2007), for nefarious purposes and serious com-
promise of individual privacy and safety and putting the
whole businesses in jeopardy. Additionally, they pose a
threat to state-level security and enable further and even
more serious criminal activities.

Software testing

Automated unit and integration testing of software
products has been practiced and its importance has been

known for a long amount of time (Zhu et al., 1997). The
development of advanced fuzzy testing utilities such as
the American Fuzzy Lop (Zalewski, 2016) has made it
easier to find unexpected bugs and issues not covered by
traditional unit and integration testing methodologies,
and tools for static analysis of programs have come a
long way to predict and pinpoint possible causes of bugs
early in the development process of a particular feature
or component. However, these kinds of tools are alleged
not to be used by developers as often as they ought to
(Johnson et al., 2013).

On the other hand, 100% code/branch coverage re-
quires a lot of effort in order to be maintained at that
level, and programmers view writing tests as a notoriously
unimaginative use of their time. This issue is something
that is better dealt with economically, by giving pro-
grammers working on security-critical code better incen-
tives for maintaining a high level of code coverage, or by
(optimally) delegating that matter to competent quality
assurance engineers whose only focus would then be to
keep the product thoroughly automatically tested after
every change.

Security audits

Independent researchers, mostly for economic-, repu-
tation- or enthusiasm-driven reasons, often conduct
security audits of popular software that is heavily relied
upon for security, or is a component in a considerable
amount of systems where it can cause further security
issues if vulnerable to attacks in some way. Often, these
reviews are performed by companies and organizations
specializing in software security, cybercrime preven-
tion and related fields, in order to gain recognition for
uncovering one or more vulnerabilities and possible
attacks, or for purely ideological reasons of improving
the state-of-the-art.

In the wake of “Snowden revelations”, cybersecu-
rity has become a politically polarized subject, a char-
acterization that can possibly be put to good purpose:
security-minded individuals and organizations alongside
those who care about the cause of secure computing and
mitigation of related threats can sponsor (through dona-
tions, crowdfunding and similar means) big audits and
reviews of existing and relied upon software in order to
achieve further guarantees of its safety and proper design.

Of course, this is not limited to full-scale audits of
software. Code review by a maintainer or a more expe-
rienced developer should be mandatory, not optional,
and should be enforced on every code commit. This

SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

Cryptography and security

141

allows developers who are more innately familiar with
the codebase to spot early problems that may arise due to
complex interactions between separate modules, which
cannot be achieved with an incomplete understanding
of the project’s code.

Safer programming languages

OpenSSL, a library that has been the target of many
recently uncovered vulnerabilities, is written in C, and
so is the entirety of almost all Unix-compatible kernels
currently in active use, which are the cornerstone of a
majority of web servers in the world at 68% (W3Techs,
2016c), smartphone devices, routers, hardware firewalls
and even home appliances.

C is a language first designed in 1978 and not receiv-
ing any significant, fundamental standards update since
the present day. It is perhaps obvious that the kind of
programming language which, for instance, does not
provide any memory safety guarantees and which is,
in comparison to presently available languages, a thin
abstraction around low-level assembly, is ill-suited for
the kinds of uses it is being put to today. With the avail-
ability of many safer, significantly more modern, less
error-prone and mostly just as performant programming
languages, a long-term goal of using them instead of
lower-level alternatives (where possible) can lower the
number of critical security vulnerabilities that are now
being discovered on a monthly basis.

Among languages that are better suited for this par-
ticular use-case, the authors would like to highlight Rust
(Mozilla, 2016), an open-source effort by Mozilla, which is
explicitly designed for safe network and systems program-
ming, and by design prevents several classes of behavior
that are known to have been the biggest sources of critical
vulnerabilities to date (namely, memory safety violations
and race conditions).

Economical incentives

Software that is used to power most of the modern web
is, in big part, free/libre software or open-source (among
many examples are Linux, Apache, MySQL, PHP, Redis,
etc.), which tremendously helps their users by allowing
them to modify and tweak their behavior, benefit from
the work of the community as a whole and remove the
financial barriers to using fast, robust and safe software.
On the other hand, developers working on free/libre and
open-source software are mostly not compensated for
their work, and consider it a hobby, yet are able to create

functional and well-performing tools that are used and
relied upon by big organizations and causes.

Donating and encouraging donations to these pro-
jects, especially by entities that have significantly benefited
from their use, can help in the long-term by creating
a more favorable position and allowing the maintain-
ers and active members of the project to dedicate more
time to further refining the piece of software, testing it
and improving its quality in terms of both performance
and safety.

4. CONCLUSION

As we have seen, unfortunately, there is no shortage
of high-profile security vulnerabilities that open up attack
surfaces for serious compromise of information systems
used nowadays. Most of these vulnerabilities have been
brought about by either lack of manpower on complex
software projects (as is mostly the case with OpenSSL),
sparsely tested legacy code (as is mostly the case with
Bash), and other factors and combinations thereof.

We believe that the proposed high-level means of
mitigating these kinds of threats can prove fruitful in
the long run, as the principles behind them have been
well known and thoroughly proven effective in the soft-
ware engineering and security industry for a long time,
though their application, in our opinion, has not been
widespread enough to prevent these issues or significantly
lower their impact.

Finally, we believe that, while our proposed meth-
ods involve more up-front investment, the economic
and humanitarian damage effected by the multitude of
security-critical bugs that compromise individual, as
well as corporate privacy and integrity, far outweighs
the possible downsides of implementing these security
practices. As such, we encourage organizations, indi-
viduals, software developers, project maintainers and
other involved parties to consider the facts presented
and draw their own conclusions about the usefulness of
our proposed approach.

REFERENCES

Aviram, N., Schinzel, S., Somorovsky, J., Heninger, N.,
Dankel, M., Steube, J., Valenta, L., Adrian, D., Hal-
derman, J. A., Dukhovni, V., Käsper, E., Cohney, S.,
Engels, S., Paar, C. & Shavitt, Y. (2016). DROWN:
Breaking TLS using SSLv2. Retreived March 14,
2016. From https://drownattack.com/drown-at-
tack-paper.pdf.

SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

Cryptography and security

142

Belshe, M., Peon, R. & Thomson, E. M. (2015). Hypertext
Transfer Protocol Version 2 (HTTP/2), RFC 7540.

Christ, H. D. K. M. (2002). Lay Internet Usage: An Em-
pirical Study with Implications for Electronic Com-
merce and Public Policy.

Chromium Project (2009). SPDY: An experimental proto-
col for a faster web. Retrieved March 14, 2016. From
https://dev.chromium.org/spdy/spdy-whitepaper.

Cohen, D., Lindvall, M., & Costa, P. (2003). Agile software
development. DACS SOAR Report, 11.

Delamore, B., & Ko, R. K. (2015). A Global, Empirical
Analysis of the Shellshock Vulnerability in Web
Applications. In Trustcom/BigDataSE/ISPA, 2015
IEEE, 1, 1129-1135.

Dierks, T. & Rescorla, E. (2008). The Transport Layer Se-
curity (TLS) Protocol Version 1.2, RFC 5246.

Durumeric, Z., Kasten, J., Adrian, D., Halderman, J. A.,
Bailey, M., Li, F. & Paxson, V. (2014, November).
The matter of Heartbleed. In Proceedings of the
2014 Conference on Internet Measurement Con-
ference (pp. 475-488). ACM.

ECMA (2015). ECMA-262 6th Edition: ECMAScript® 2015
Language Specification. Retrieved March 14, 2016.
From http://www.ecma-international.org/ecma-
262/6.0/.

Freier, A., Karlton, P., & Kocher, P. (2011). The Secure
Sockets Layer (SSL) Protocol Version 3.0, RFC 6101.

ISO/IEC (1994). ISO/IEC 7498-1:1994. Information tech-
nology – Open systems interconnection – Basic refer-
ence model: The basic model.

Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R.
(2013, May). Why don’t software developers use
static analysis tools to find bugs?. In Software Engi-
neering (ICSE), 2013 35th International Conference
on (pp. 672-681). IEEE.

MITRE (2014a). CVE-2014-0160. Retrieved March 14,
2016. From https://cve.mitre.org/cgi-bin/cvename.
cgi?name=cve-2014-0160.

MITRE (2014b). CVE-2014-3153. Retrieved March 14,
2016. From https://cve.mitre.org/cgi-bin/cvename.
cgi?name=cve-2014-3153.

MITRE (2014c). CVE-2014-6271. Retrieved March 14,
2016. From https://cve.mitre.org/cgi-bin/cvename.
cgi?name=cve-2014-6271.

MITRE (2015). CVE-2015-0235. Retrieved March 14,
2016. From https://cve.mitre.org/cgi-bin/cvename.
cgi?name=cve-2015-0235.

MITRE (2016). CVE-2016-0800. Retrieved March 14,
2016. From https://cve.mitre.org/cgi-bin/cvename.
cgi?name=cve-2016-0800.

Mozilla (2016). The Rust Programming Language. Re-
trieved March 14, 2016. From https://www.rust-
lang.org/.

W3C (2014). HTML5: A vocabulary and associated
APIs for HTML and XHTML. Retrieved March 14,
2016. From https://www.w3.org/TR/2014/REC-
html5-20141028/.

W3Techs (2016a). Usage of HTTP/2 for websites. Re-
trieved March 14, 2016. From http://w3techs.com/
technologies/details/ce-http2/all/all.

W3Techs (2016b). Usage of web servers for websites. Re-
trieved March 14, 2016. From http://w3techs.com/
technologies/overview/web_server/all.

W3Techs (2016c). Usage of operating systems for websites.
Retrieved March 14, 2016. From http://w3techs.
com/technologies/overview/operating_system/all.

Wall, D. (2007). Cybercrime: The transformation of crime
in the information age.

Zalewski, M. (2016). American Fuzzy Lop. Retrieved
March 14, 2016. From http://lcamtuf.coredump.
cx/afl/.

Zhu, H., Hall, P. A., & May, J. H. (1997). Software unit test
coverage and adequacy. ACM Computing Surveys
(csur), 29(4), 366-427.

