
SINTEZA 2016

INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

10

Milan Tair

Singidunum University,
32 Danijelova Street, Belgrade, Serbia

Correspondence:
Milan Tair

e-mail:
milan.tair@gmail.com

USER DEFINED NAMED PLACEHOLDERS FOR REGULAR
EXPRESSION SEGMENTS IN COMPLEX REGULAR
EXPRESSIONS

THE INTERNET AND DEVELOPMENT PERSPECTIVES

Abstract:
This paper describes an own implementation of a regular expression pre-
processor written in PHP. It extends the regular expression functionality by
allowing users to define named segments. These segments include custom
character classes, matching groups etc. The pre-processor allows for writing
complex regular expressions that are simpler to maintain. In addition, this
paper presents a use case of the practical utilisation of the pre-processor. Fur-
thermore, it includes a comparison of expressions written with and without
user-defined segments.

Key words:
regular expressions, user defined segments, php, pre-processor,
language extension.

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

DOI: 10.15308/Sinteza-2016-10-14

1. INTRODUCTION

Regular expressions are helpful tools that are implemented in many
applications and solutions. These solutions include business applications,
web crawlers, content indexing engines (Sulzmann & Zhuo Ming Lu,
2016). They are also used for data transformation in preparation for mi-
gration (Kuznetsov & Simdyanov, 2006), as well as data cleaning (Dasu &
Johnson, 2003) etc. Many programs use regular expressions that are very
complex (Friedl, 2006). Complex regular expressions tend to be hard to
maintain and edit. This is especially the case for regular expressions edited
by programmers who are not familiar with the purpose of specific regular
expressions. Because of this, long regular expressions are commented and
documented (Curioso, Bradford, & Galbraith, 2010). However, this may
only add to the overall length and complexity. Instead, this can be done
by simplifying expressions while retaining original purposes and match-
ing capabilities. One way is to use symbolic representations instead of
somewhat complex sections of an expression. These symbolic representa-
tions include character class indicators which replace character groups in
regular expressions (Friedl, 2006), which are the most frequently used,
alongside Unicode properties. Such constructs are supported by most
regular expressions standards. However, even with the helpers available
in standardised regular expression implementations, regular expressions
tend to remain too complex to be able to maintain easily. Instead of using
only standard, predefined symbolic placeholders for regular expression
segments, this paper presents an own implementation of a concept that
extends this philosophy. It introduces user defined regular expression

SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

The Internet and Development Perspectives

11

segments which can be used in traditional regular expres-
sions. Such regular expressions need to be run through a
pre-processor, which replaces these custom placeholders
with lengthy regular expression segments wherever they
may occur. This enables programmers to write seemingly
shorter regular expressions that are easier to read by
programmers and are hence easier to maintain and edit.

2. BACKGROUND

Definitions and problem description

Regular expressions are series of characters, some with
special meaning, sometimes abbreviated as regex, that
form a search pattern used for pattern matching within
sections of a string or for matching an entire string (Li,
et al., 2013).

Most useful regular expressions used in large infor-
mation systems and applications that are used for either
searching through data, transforming or validating it
(Sulzmann & Zhuo Ming Lu, 2016) are complex (Friedl,
2006). As explained in the introduction section of this
paper, some solutions exist that aim to make such regular
expressions easier to maintain. This is done either by
making them shorter and therefore easier to read and
understand or by adding comments and documenting
sections or entire expressions. The aim of this is helping
the maintainer gain additional insight and understand-
ing of the meaning behind some of its parts (Curioso,
Bradford, & Galbraith, 2010).

A sample of a complex regular expression for find-
ing occurrences of a postal address written in a standard
format defined by the Serbian Postal Services (Post of
Serbia) in Latin or Cyrillic scripts for the Serbian language
is shown in Listing 1.

Listing 1. A regular expression for matching postal
addresses written in the official Serbian address format.

The sample from listing 1 does not cover all conditions
explained in the instructions (Post of Serbia). Neverthe-
less, it does cover the majority or addresses instances that
occur in the postal system of Serbia. Military addresses,
PO Box users’ addresses and addresses without street
names, such as those in smaller settlements, are not always
matched by this regular expression. Nonetheless, it can
be used to match the majority of Serbian postal address.

Even though there are much more complex expres-
sions that are used frequently in larger specialized ap-
plications, this example is used to define the problem
whose solution is explained in this report.

Existing solutions

A number of solutions exist that aim to increase the
maintainability of long and hard to read regular expres-
sions. The Perl programming language provides a mecha-
nism of spreading a regular expression along multiple
lines (Conway, 2009). It also supports adding comments.
This method increases readability, which in term in-
creases maintainability of the regular expression code.
However, it does not reduce the length of the regular
expression. Instead, quite the opposite, the length of the
expression additionally increases. The lack of abstraction
in regular expressions (Erwig & Goponath, 2012) is one
of the key deficiencies. It causes scalability problems that
result in regular expressions growing quite large quickly.
Also, much of the regular expression code is sometimes
redundant (Dasu & Johnson, 2003). A combined explana-
tion for the date expression presented in (Erwig & Gopo-
nath, 2012) gives an interesting method of explanation.
This method can easily be transformed in an SQL-like
language. This language can be used for defining regular
expression. However, asides from a presentation in the
mentioned paper, no implementation has been reported
to this day. Similar concepts exist in modern web ap-
plications developed using the Model-View-Controller
pattern. This is particularly the case in the area of request
routing, where the router component allows for defin-
ing route constraints. Segments of the route are named
and later defined using regular expressions (Microsoft
Development Network).

3. DISCUSSION

The user defined named regular expression segment
placeholder pre-processor is written with the aim to
provide programmers with a way to make otherwise
complex and long regular expressions shorter. Thus,

SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

The Internet and Development Perspectives

12

this would also make them easier to read and interpret.
This increases maintainability of the regular expression.
In addition, named or symbolic segments can be shared
between programmes across many different projects.
Additionally, the implementation has two modes of writ-
ing and organising the expression code. The first is the
multiline mode where all whitespaces before and after
the line including line breaks are ignored. The second
is a standard single line expression. The multiline mode
supports adding comments at the end of the line, where
a comment starts with the hash sign character and ends
with the line feed. Each regular expression segment can
be assigned a name. This is analogous with defining
a custom type in some programming languages. The
named segment is stored in its own file. These files exist
in the segments directory with the extension .nrexss.
The extension is an abbreviation of named regular ex-
pression segment source. The pre-processor is written
in the PHP scripting language in form of a final class.
The pre-processor code is contained in a single class file.
Nevertheless, future revisions and expansions of the pre-
processor functionalities might result in the code being
refactored and organised into a complete PHP library.
The pre-processor needs to be instantiated before use in
the program and a sequence of methods with adequate
arguments needs to be called before the pre-processor
object is ready to compile a regular expression, which
includes named segments that will be replaced with the
corresponding full-length regular expression code. An
example of a PHP code snippet that illustrates the use
of the pre-processor is shown in Listing 2.

In the code shown in listing 2, the $pattern variable’s
value represents a regular expression with embedded
named segments. The pattern still matches postal ad-
dresses identically to the one shown in listing 1. But,
it is much easier to read and understand as well as to
maintain and expand. The named segments are defined
as plain text files with the .nrexss extension and stored
in the ~/rxns/segments/ directory. The file names match
the segment name between braces.

When the pre-processor’s matchAll method is called
with a reference to an array as an argument, the pattern is
first normalised so that all whitespaces at the beginning
and the end of each line are trimmed off and all lines are
joined together into a single continuous line. After this
operation is completed, a regular expression matching of
all embedded named segments is performed. The method
filters out duplicates. Names of the matched segments are
extracted and a regular expressing named segment file
with the matching filename is looked up in the defined
segment directory path. All mentions of the embedded
named segment are replaced with the trimmed content of
the selected file. This is repeated for all named segments.
If at least one named segment remains embedded in
the pattern string due to its corresponding file not be-
ing found, the method will throw an object of a custom
class FileNotFoundException. This class extends PHP
Exception. If no error occurs and the pattern is prepared,
regular expression matching is performed and the result
set is normalised and transformed into a single numeri-
cally indexed array returned by reference.

Listing 2. Sample PHP code showing the use of the regular expression named segment pre-processor class for
extracting postal addresses written in the official Serbian address format.

SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

The Internet and Development Perspectives

13

As seen in listing 2, after calling the pre-processor
object’s matchAll method, the $matches array is printed
to screen for review. The output is a human-readably
formatted array (Zend Technologies).

4. A USE CASE

Originally, the user defined named regular expres-
sion segment placeholder pre-processor was developed
as part of a project to extract postal addresses, phone
numbers and other structured information from large
collections of plain text documents. These documents
were created by running scanned pages of printed media
through object character recognition (OCR). The aim of
the project was to collect above-mentioned information
for creating a database for marketing activities for an
electronic marketing solutions software development
company from Kragujevac, Serbia in 2008. Initially, the
useful data extraction software used moderately complex
regular expressions for matching certain standardised
formats of different structured information. Over time,
the complexity of regular expressions had increased.
Also, the structure of the development team frequently
changed and a need for a way to make regular expressions
easier to maintain was recognized. The initial idea for the
implementation explained in this report was presented
and tested. The performance impact of an additional
regular expression pre-processor was not evaluated in
detail, but some ad hoc measurements had shown that
it was inconsequential to the overall performance of the
data extraction application. Likewise, it did not impact
the schedule of the project.

Initial results

The initial results of using the pre-processor were
positive. Regular expression coders had increased out-
put. Also, they had moved up the useful data structure
matcher pattern development schedule much faster than
before. The learning curve was steep. Thus, the impact of
the introduction of a new technology was almost of no
consequence to the productivity of the development team.
The final result was a beta version of the application that
was fully automated. It extracted useful structured infor-
mation from scanned pages as they entered a stack after
being scanned. Document scanning was the only manual
job in the system. Future solutions were to implement an
automated book scanning hardware. Unfortunately, the
company was closed in 2010 and no further development
of this application has been done.

Known deficiencies

During the implementation and development process,
some deficiencies of the initial design were identified. The
first was the lack of recursive properties of the named
segment replacement. This was both in the pattern and
in other named segments was a major deficiency of the
design. This resulted in many identical pattern segments
being used redundantly in many segments. Preferably,
they should have been written once as a small segment
and then embedded in other segments. This deficiency
was never solved even through the solution was pro-
posed. It was due to the lack of approval from the project
management. The second deficiency was the lack of a
naming convention for segments. As for this use case,
the development team structure changed frequently. This
and the lack of a naming convention caused a situation
where multiple programmers had written segments with
different names that have matched the same pattern.
After it had become obvious and began slowing down
development a naming convention was introduced. The
naming convention was changed multiple times during
the development process. Ultimately, the final version
was established. The segment was to be named as short
as possible while still regaining enough information to
clearly identify the purpose and the pattern it was sup-
posed to match. All segments had to include a two-letter
ISO 639-1 language code (Codes for the Representation
of Names of Languages) at the end of their name to in-
dicate which language they were specialised for. Named
segments that were not specialised for any language, but
were used for general pattern matching, such as e-mail
were not to be suffixed at all. The third deficiency that
was recognised early during the development process
was the lack of the ability to group named segments into
categories or namespaces. In this particular use case, the
number of created named segments was greater than one
hundred and was hard to organise by naming alone. A
naming convention revision was suggested to attempt to
deal with this issue, but was never approved.

5. FURTHER DEVELOPMENT

Official development of the pre-processor was halted
in 2009. It was intermittently continued over the years
for personal use by the author. There is some aspiration
to publish a completely rewritten version of the pre-
processor as an open source project. Hopefully, most of
the unsolved deficiencies will be solved by design instead
of convention.

SINTEZA 2016
INTERNATIONAL SCIENTIFIC CONFERENCE ON ICT AND E-BUSINESS RELATED RESEARCH

Sinteza 2016
submit your manuscript | www.sinteza.singidunum.ac.rs

The Internet and Development Perspectives

14

6. CONCLUSION

This paper aimed to present an example of the use
of regular expressions in an own implementation de-
signed to extend the original functionality of the regular
expression engine integrated into the PHP language. It
had shown a use-case where this extension was used and
examples of how these new features were designed and
applied for solving the specific problem. The problem
that was illustrated was the matching and extraction of
postal addresses in the official format for the Serbian
language from bodies of text. The main contribution
of this implementation is the ability to write complex
regular expressions that are simple to maintain by creat-
ing aliases and expression groups with symbolic names.
These segments were shown in examples provided for
illustration purposes.

REFERENCES

Codes for the Representation of Names of Languages.
(n.d.). (ISO) Retrieved 1 17, 2016, from https://
www.loc.gov/standards/iso639-2/php/code_list.php

Conway, D. (2009). Perl Best Practices - Standards and
Styles for Developing Maintainable Code. O’Reilly
Media.

Curioso, A., Bradford, R., & Galbraith, P. (2010). Expert
PHP and MySQL. John Wiley & Sons.

Dasu, T., & Johnson, T. (2003). Exploratory Data Mining
and Data Cleaning. John Wiley & Sons.

Erwig, M., & Goponath, R. (2012). Explanations for regu-
lar expressions. Proceedings of the 15th international
conference on Fundamental Approaches to Software
Engineering (pp. 394-408). Berlin: Springer-Verlag.
doi:10.1007/978-3-642-28872-2_27

Friedl, J. (2006). Mastering Regular Expressions. O’Reilly
Media, Inc.

Kuznetsov, M., & Simdyanov, I. (2006). Regular Expres-
sions. In PHP Security & Cracking Puzzles (pp. 125-
128). BHV-Petersburg.

Li, W., Min, Y., Yuanpeng, Z., Xingyun, G., Danmin,
Q., Kui, J., & Jiancheng, D. (2013). A Rule-Based
Algorithm for Extracting Medical Data from Text.
International Symposium on Signal Processing,
Biomedical Engineering, and Informatics (SPBEI
2013). DEStech Publications.

Microsoft Development Network. (n.d.). Route.Con-
straints Property. (Microsoft) Retrieved 12 20, 2015,
from https://msdn.microsoft.com/en-us/library/
system.web.routing.route.constraints(v=vs.110).
aspx

Post of Serbia. (n.d.). Instruction for correct addressing
and preparation of postal items before posting them
to the PE Post of Serbia. Retrieved 12 10, 2015, from
http://www.posta.rs/dokumenta/eng/posalji/Adres-
ovanje-posiljke.pdf

Sulzmann, M., & Zhuo Ming Lu, K. (2016). Fixing Regu-
lar Expression Matching Failure. Kochi: (unpub-
lished) 13th International Symposium FLOPS.
doi:10.13140/RG.2.1.2950.3440

Zend Technologies. (n.d.). PHP: print_r - Manual. Re-
trieved 12 20, 2015, from http://php.net/manual/en/
function.print-r.php

