
143

Applied informatics and education  SYNTHESIS 2015

International Scientific Conference of IT and Business-Related Research

Abstract:
When making the decision in various fields, the following types of 
uncertainties are frequently encountered: ignorance of the phenomenon; 
imprecision of measurement; the vagueness of language; subjective 
assessment. Combining information from different sources in a single 
important output is a crucial task of numerous investigations, mostly 
based on powerful computers. The paper presents the mathematical 
models based on aggregation functions for these uncertainties such as 
probability theory and statistics (by copulas), and newer mathematical 
methods such as the theory of fuzzy sets and fuzzy logics, and non-
additive measures and integrals based on them. A generalization of 
the utility theory is given based on pseudo-additive measures.

Apstrakt: 
Prilikom donošenja odluka u različitim oblastima susrećemo se sa 
brojnim nesigurnostima poput  nedovoljnog poznavanja pojave, 
nepreciznosti merenja, jezičke neodređenosti, subjektivne procene. 
Kombinovanje informacija iz različitih izvora u jedinstven prikaz 
predstavlja glavni zadatak brojnih istraživanja, uglavnom na jakim 
računarima.  U radu su prikazani matematički modeli na osnovu 
agregatnih funkcija za date neodređenosti, poput teorije verovatnoće 
i matematičke statistike (preko kopula), kao i novije matematičke 
metode kao što su teorija fazi skupova i fazi logika, i neaditivne mere 
i integrale zasnovane na njima. Izvršena je generalizacija teorije ko-
risnosti na osnovu pseudo-aditivnih mera. 
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1.  INTRODUCTION 

Decision making concerns decision under multiple criteria 
or multiple attributes, multiperson decision making, and mul-
tiobjective optimization, see (Arrow, 1963; Bouchon-Meuner, 
1998; Fishburn,1970; Fodor and Roubens, 1994; Luce and Raif-
fa, 1958; Parmigiani and Inoue, 2009; Quiggin, 1993; Tapan, 
1997). Decision making is usually based on aggregating scores 
or preferences, obtained from different decision makers (vot-
ers, experts, etc.), on a given set of alternatives. Therefore, it is 
important to have a wide range of aggregation functions (opera-
tors), knowing their propert ies and having methods for their 
constructions (Aczel, 1996; Grabisch et al., 2009; Pap, 2002a; 
Rudas, Pap, & Fodor, 2013). 

The paper presents the mathematical models based on ag-
gregation functions for these uncertainties as probability theory 
and statistics (by copulas), and newer mathematical methods as 
theory of fuzzy sets and fuzzy logics, and non-additive meas-
ures and integrals based on them. A generalization of the util-
ity theory is presented based on pseudo-additive measures. We 
shall give only a short introduction to the theory of aggregation 
functions (Section 2), by stressing some important classes of 
them, such as triangular norms and conforms, copulas. Joint 
distribution functions in the theory of probability are based on 
copulas (Section 3). A short part of the theory of fuzzy sets is 

presented in Section 4. Special attention is devoted to non-addi-
tive measures and corresponding integrals, such as Choquet and 
Sugeno (Section 5). This important utility theory is generalized 
in Section 6.

 
2.  AGGREGATION FUNCTIONS

Aggregation function (operator) is a function [ ] [ ]


Nn

n

∈

→ 1,01,0:A  
such that the following hold

(i) ( ) ( )nn yyyxxx ...,,...,, ,21,21 AA ≤  when xi≤yi for every i∈{1,2,...,n},
(ii) A(x)=x for every x∈[0,1],
(iii) A(0,0,..,0)=0 and A(1,1,..,1)=1. 
Aggregation functions are classified in three classes: conjunc-

tive, disjunctive and internal operators, depending on whether 
the value of the operator is always less than the minimum or 
greater than the maximum or between the minimum and max-
imum arguments, respectively. A mixed type of aggregation 
functions is also considered. Internal aggregation operators are 
often called compensatory operators; in this case, the bad (or 
good) result of one criterion can be compensated with good (or 
bad) results of the second criterion, so that the final result is an 
average value. For many different applications, we mention two 
special important classes of aggregation functions: triangular 
norms and conorms, copulas. 
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A function T: [0,1]2→[0,1] is triangular norm (brieflyt-norm) 
if for every x, y, z ∈ [0,1] we have (T1) T(x,y)=T(y,x) (commu-
tativity), (T2) T(T(x,y),z) = T(x,t(y,z)) (associativity), (T3) x≤y 
⇒ T(x,z)≤T(y,z) (monotonicity), (T4) T(x,1)=x (neutral ele-
ment 1). Four basic t-norms are: TM(x,y)=min(x,y), minimum 
t-norm, TP(x,y)=x.y, product t-norm, TL(x,y)=max(x+y-1,0), 
Lukasiewicz t-norm, 

TD(x,y)={0    if   (x,y) ∈ [0,1]2 
1                others.

A function S: [0,1]2→[0,1] is t-conorm if there exists a t-norm 
T such that for every x,y∈[0,1]2 we have S(x,y)=1-T(1-x,1-y) (dual 
pair). Four basict-conorms are: SM(x,y)=max(x,y) - maximum t-
conorm, SP(x,y)=x+y-x.y - probabilistic sum, SL(x,y)=min(x+y,1) 
- bounded sum,

SD(x,y)={     1                if   (x,y) ∈ [0,1]2 
max(x,y)                    others.

Dual pairs are (TM,SM), (TP,SP), (TL,SL), (TD,SD) Twodimen-
sional copula is a binary operation C: [0,1]2→[0,1] such that 
for every x,x*,y,y*∈[0,1] with the property x≤x* and y≤y*, 
we have C(x,y)+C(x*,y*)≥C(x,y*)+C(x*,y), C(x,0)=C(0,x)=0, 
C(x,1)=C(1,x)=x. 

There is a software package called AOTool for many ap-
plications, which can be freely downloaded from http://www.
deakin.edu.au/gleb/aotool.html=.AOTool. It very useful for the 
construction of aggregation functions based on the empirical 
data. 

3.  JOINT DISTRIBUTION FUNCTION

The classical multivariate statistics is based on the multivari-
ate Gaussian distribution. The importance of copulas is stressed 
by the following theorem which gives new results and applica-
tions. 

Sklar theorem: Let X and Y be random variables (with mar-
ginal distribution functions FX, FY, respectively), with joint dis-
tribution function HXY. Then there exists a copula C, such that 
HXY(x,y)= C(FX(x), FY(y)). If FX and FY are continuous func-
tions, then C is unique. Contrary, if FX and FY are distribution 
functions for random variables X and Y, then the function HXY 
given by the previous formula is the joint distribution function 
for random vector (X,Y) with marginal distribution functions FX 
and FY. 

The importance of dependence modeling with copulas is the 
fact that for continuous multivariate distributions, the modeling 
of the univariate marginals and the multivariate or dependence 
structure can be separated and represented by copula. For fur-
ther results and applications see (Joe 2015; Nelsen, 1999). 

4.  FUZZY SYSTEMS

In order to describe situations when it is not clear whether 
an element belongs to the set, a generalization of the set in the 
sense that the affiliation element is given by a certain degree is 
introduced. Fuzzy subset A of X is given by membership func-
tion µA: X →[0,1], where the value µA(x) is interpreted as a de-
gree of belonging x∈X to fuzzy set A, see (Grabisch, Nguyen & 
Walker, 1995; Klement, Mesiar & Pap, 1996; Pap, 1999; Pap, 
2000a). Instead of µA(x), we use also the notation A(x). The set 
of all fuzzy subsets of X is denoted by F(X). 

Definition. Let A∈F(X). Then: A is normed if (∃x∈X)
(A(x)=1); support of A is given by supp(A)={x∈XµA(x)>0}; 
kernel of A is given by ker(A)= {x∈XµA(x)=1}; α-level of A is 
given by

[A]α={x∈XµA(x)>α  if α>0
  cl(supp(A)      if α=1,

where cl(supp(A)) is the closure of the support of A; a fuzzy set 
A is convex if [A]α is a convex subset of X for all α. For A∈F(X) 
we define ker(A)=[A]1, and 

( ) [ ]
] ]


1,0

supp
∈

=
α

αAA , [A]0=X . 

Definition. Let A,B∈F(X). A and B are equal (A=B), if 
µA(x)=µB(x)(x∈X), and A is a subset of B, (A<B or A⊂B), if 
µA(x)<µB(x)(x∈X). 

Knowing all α-levels for A∈F(X), the fuzzy set A can be 
reconstructed in the following way µA(x)=sup{min(α,1[A]

α (x))
α∈]0,1]} (x∈X), where is the characteristic function of the crisp 
set [A]α. 

At the beginning of the theory of fuzzy sets, operations with 
fuzzy sets were based on two operations: min and max. Today, 
many different types of continuous t-norms and t-conorms are 
used. We introduce fuzzy intersection ∩T, fuzzy union ∪S, fuzzy 
complement CN  on F(X), based on t-normT, t-conormS, and 
negationiN (standard negationN(x) =1-x), respectively, (Kle-
ment, Mesiar, Pap, 2000) in the following way:

µA∩TB(x)=T(µA(x), µB(x)), µA∩SB(x)=S(µA(x), µB(x)), µCNA(x)=N(µA(x))

More details on the triple (T,S,N) and on the structure 
(F(X), ∩T, ∪S, CN,0,1) can be found in (Klement, Mesiar & Pap 
2000). The theory of fuzzy sets and fuzzy logics have a wide 
range of applications through fuzzy systems: approximate rea-
soning, fuzzy controllers, data analysis, pattern recognition, 
image analysis, decision theory, optimization,economy and 
game theory, connections with neural networks and genetic al-
gorithms. We mention here only two recent applications based 
on linear fuzzy space (Obradović et al., 2011; Obradović et al., 
2013) in analyzing the satellite images, location of roads in ro-
botics, and analyzing images in medicine. There are many useful 
computer programs which have adapted fuzzy sets, e.g. Fuzzy 
Toolbox of Matlab. 

5.  NON-ADDITIVE MEASURES AND 
CORRESPONDING INTEGRALS

Non-additive measures, as a generalization of the classical 
measure, have the advantage that they enable modeling situ-
ations where events are overlapping, e.g., (Ishii and Sugeno, 
1985). LetAbe a σ-algebra of subsets of the set X. 

Definition. Monotone (fuzzy) measure m on X is a monotone 
set function defined onAwith values in [0,∞] which is zero on 
empty set. 

Instead of the notation m, we shall also use the notation µ  
(do not mix with the same notation for membership function 
for fuzzy set). For more details see (Denneberg, 1994; Pap, 1995; 
Pap, 2002b; Wang & Klir, 1992). 

Example. Let Sbe a continuous t-conorm. A mapping m: 
A[0,1] is a pseudo-measure, if m(∅)=0, m(X)=1, and for all 
A,B∈A, A∩B=∅,it holdsm(A∪B)=S(m(A),m(B)). 

There are important integrals based on non-additive meas-
ures in many applications. We shall here mention two types of 
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integrals for finite cases. Let µ be a monotone measure on X 
and f a function defined on X and with values in the set of non-
egative real numbers and with finite set of values {a1,a2,...,an}, 
where a1<a2<...<an. Choquet integral (C) ∫ f(x)dµ(x) for the finite 
case (or simply (C) ∫ fdµ) is defined by

( ) ( ){ }( )1
1

( ) −
=

= − ⋅ ≥∑∫
n

i i i
i

C fd a a x f x aµ µ .

Let be normalized fuzzy measure on X and f is a function on 
X with values {a1,...,an}, where 0≤a1≤,...,≤an≤1. Sugeno integral 
(S) ∫ f(x)0µ(x) (or briefly (S) ∫ f 0 µ)) is given by (finite case) 

( ){ }( )1
( ) .

=
 = ∨ ∧ ≥
 ∫ 

n

i ii
S f a x f x aµ µ

We highlight here that Choquet integral is often used as 
an aggregation function, see (Grabisch, 1996; Grabisch & La-
breuche, 2008) and the edited monograph (Grabisch, Muro-
fushi & Sugeno, 2000). 

For the purpose of the identification of the fuzzy measure by 
applications of Choquet integral, it is useful to use the softwer 
Kappalab http://www. stat. auckland. ac. nz/ivan/kappalab. 

6. HYBRID UTILITY

Special attention is devoted to hybrid utility theory as gener-
alization of the classical approach. The basic mathematical tool 
under uncertainty was based on the probability, see (von Neu-
mann & Morgenstern, 1944). However, its practical application 
has been, and still is, extremely limited. In order to generalize 
the decision theory, and therefore the utility theory, it was nec-
essary to get out of probability framework generalizing the set of 
measures. This part of the paper is based on the work of Dubois, 
Pap and Prade (2000), which is related to hybrid probabilistic 
possibilistic measure, for which it is proved that it is a limit 
in the generalization, under which the properties of the utility 
function would be lost. The paper (Dubois, Pap & Prade, 2000) 
gives an answer to the question on how to generalize the exist-
ing theory of utility and such obtained generalization improves 
the application of this theory in practice. The aim of the study 
was to determine the appropriate axiomatic based on a hybrid 
probabilistic – possibilistic measure. T is conditionaly distribu-
tive over S if for every x,y,z∈[0,1] we have (Klement, Mesiar & 
Pap, 2000a)

T(x,S(y,z))=S(T(x,y),T(x,z))(CD), under the condition 
S(y,z)<1(CD). 

Theorem. A continuous t-norm T and a continuous t-konorm 
S satisfy the condition (CD) if and only if one of the following two 
casesoccur:

(i)  S = SM
(ii) There exists a strict t-norm T* and a nilpotent t-konorm 

S* such that the additive generator s of S* such that s(1)=1 
is also a multiplicative generator of T*, and there exists 
a∈[0,1[ such that for some continuous t-norm T** we have 
the ordinal sum representations T=(<0,a,T**>,<a,1,T*>) 
and S = (<a,1,S*>), see (Klement, Mesiar, Pap, 2000a). 

The result of the preceding theorem is illustrated in Figure 
1 (using the existing isomorphisms). 

 

Figure 1. T=(<0,a,T**>,<a,1,T*>) (left)and S = (<a,1,S*>)(right). 

As a generalization of the theory of von Neumann and 
Morgenstern, optimistic hybrid utility function is introduced 
(Duboisa, Pap & Prade, 2000):

U(u1,u2;w1,w2)= S(T(u1,w1),T(u2,w2)),

where u1 and u2 are two utility values in [0,1] and w1 and 
w2 are two degrees of plausibility from the set 

{(r,s): r,s∈ ]a,1[, r+s=1} ∩ {(r,s): min(r,s) ≤ a, max (r,s) =1}. 

This utility function is examined in detail, and it can be giv-
en an interpretation related the behavior of the decision maker. 
Namely, if w1>a and w2>a, then the decision maker is very 
uncertain about the state of nature: both w1 and w2 are high 
and the two involved states have high plausibility. Subcase u1>a 
and u2>a gives that the reward is high in both states, and then 
the behavior of utility is probabilistic. Subcase u1≤a and u2>a 
(same for the case u1>a and u2≤a) is when the reward is low in 
one state but high in the other state. Then, the decision-maker 
looks forward to the best outcome and the utility is a function 
of u2 and w2 only. In case u1≤a and u2≤a both rewards are 
low, and the decision maker is possibilistic and again focuses on 
the best outcome. Now, the first state is unlikely, i.e., w1≤a and 
w2=1. Then, for u1 >a and u2>a (also for u1≤a and u2>a) is a 
situation when the plausible reward is good, then the decision 
maker looks forward to this reward. Subcase u1>a and u2≤a 
shows that the most plausible reward is low, then the decision 
maker still keeps some hope that the first state will prevail if u2 
is really bad, but weakens the utility of the first state, because 
it lacks plausibility. This phenomenon subsides when the least 
plausible outcome is also bad, but the (bad) utility of the first 
state participates in the calculation of the resulting utility, by 
discounting w1 even further. 

7. SUMMARY

We have provided a short overview on applications of some 
actual aggregation functions as triangular norms, triangular 
conorms and copulas. These applications of copulas are related 
to the theory of joint distribution functions, whose investiga-
tions are today very popular because of the need of modeling 
complex situations in many fields. Applications of triangular 
norms were illustrated in the theory of fuzzy sets, where many 
real applications occur. Non-additive measures serve as a base 
for important aggregation functions named fuzzy integrals cov-
ering Choquet and Sugeno integrals. Finally, special pairs of 
triangular norms and triangular conforms and pseudo-additive 
measures enable generalization of the classical utility theory of 
von Neumann and Morgenstern. 
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