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Abstract: 
Intelligence and security databases (ISD) are facing the specific challenges and opportu-
nities of information overload and the ultimate need for advanced intelligence analyses 
and investigations. We summarize analogies with hard core science databases (HCSD) 
challenges(the case of synoptic astronomy) and point out HCSD experiences which could 
be applied on problems facing ISD.
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INTRODUCTION

We are in an avalanche of data today. In many � elds, 
data is collecting at never known before rates. Conclu-
sions and decisions that previously were done through 
guesswork, or on thorough models, now is made using 
the data itself. Such Big Data analysis now governs almost 
eveiy area of our modern society, including telecommuni-
cation networks, retail, manufacturing, � nancial services, 
life sciences, homeland intelligence and defense systems 
and physical sciences.

Using sensors, experiments, long term monitoring 
campaigns and computer simulation, Hard Core Sciences 
(HCS) data is growing in volume and complexity at an 
enourmous rate. Today, the cost of producing the data 
is very high:satellites, large telescopes, particle accelera-
tor, genome sequencing and supercomputing centers are 
just of some examples of information generators that cost 
billions.

� e di�  culties facing the intelligence and security (IS) 
data systems are of the same kind as it was mentioned 
above in the case of HCS. As the sensors used in the vari-
ous IS surveillance missions improve, the data volumes 
are increasing with a projection that sensor data volume 
could potentially increase to the level of Yottabytes (1024 
Bytes) beyond 2015. At present, IS survey campaigns such 
as the Global Hawk [1] system, are potent of producing 
10’s to 100’s of Terabytes [2] over a period of hours. In 
contrast, the capability of transporting or storing this 
data is not keeping pace with projected growth of data. 

In Table 1 is given some impression of the relative size 
of the data sets being considered in IS. If we assume that 
the earth has surface area of 5*1014 m2 and that we could 
allocating 1byte/m2 with resolution of 1 m2/sec, it could 
be seen from Table 1 expected amount of collected data 
a� er certain time. So, IS data volumes are in many cases 
comparable to those encountered in other data intensive 
enterprises, particularly in HCS.

TABLE 1 ILLUSTRATION OF SCALES OF IS DATA
ti me of data collecti ng collected informati on

1hour 1.8 exabytes
30 days 1.3 Zett abytes

365 days 16 Zett abytes
36500 days 1.6 Yott abytes

Both, IS and HCS data becomes useful information 
only by means of using the scienti� c methods, i.e., vali-
dation of models and induction of rules from observa-
tions. Up to now, database technology has evolved mostly 
targeting � nancial applications, where correctness and 
completeness are imperative, with large a priori knowl-
edge to prepare the system for fast response. However, 
for intelligence and scienti� c databases, none of this is 
possible anymore. Beside the enormous amount of data 
to be processed, the users do not always know exactly 
what they are looking for and they not always care for 
a complete answer; of the greatest importance is search-
ing for interesting patterns. � e Volume of the data, as a 
major challenge, is the one that is most easily recognized. 
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However, there are other challenges, as it is in Variety and 
Velocity [3]. By Variety, it is usually meant heterogeneity 
of data types, representation, and semantic interpretation. 
By Velocity, it is meant both the rate at which data arrive 
and the time in which it must be acted upon. � e last is 
very important in the cases such as hurricanes, tsunami, 
earthquakes, near earth asteroids � ybys as well as crime 
and terrorist acts. Beside this three major V’s we could 
found more V’s challenges such as:Veracity (verifying 
inference-based models from comprehensive data collec-
tions) , Variability, Venue, Vocabulary, etc.

In HCS, the problems start already during data acqui-
sition, e.g. when the data tsunami requires us to make de-
cisions, currently in an ad hoc manner, in the sense what 
data to save and what to discard, and how to store what 
we keep reliably with the right metadata. Similarly with 
counter terrorism, large quantities of data are likely to be 
gathered and analysed to support the process of tracking 
and predicting terrorist activity. Even data of no apparent 
importance could be of greater signi� cance at a later stage 
of investigation. As a result the variety of information is 
much greater than for conventional police investigations 
and it may not be possible in advance to predict all the 
kinds of information that one needs to hold.

Beside this, the value of data enormously rises when 
it can be linked with other data, thus data integration is a 
major creator of value. Since most data is directly gener-
ated in digital format today, we have the opportunity and 
the challenge both to in� uence the creation to later link-
age and to automatically link previously created-historical 
data. Here, we review the overall challenges facing the 
ISD as regards large data, but with the objective of put-
ting these in the context of similar challenges facing other 
large enterprises, such as HCSD. It is useful to examine 
one of these HCSD: the newly coming � eld of synoptic 
astronomy as it is an example in which the response to 
large data volumes is connected to the most important 
scienti� c goals.

DATA CHALLENGES

The case of synoptic astronomy

Astronomy is a “Big Data” science � ourishing from the 
synergy of computer science and applied mathematics- 
particularly statistics. Fundamentally, modern astronomy 
has been established on the digital pictures of the Kosmos. 
Each pixel can have between ten and a few thousand at-
tributes. At the image resolution of modern astronomical 
instrumentation, the entire sky requires a peta-scale data-
base regime. Speci� cally, astronomy is coping to answer 
questions about our Universe by combining the observa-
tions with innovation in imaging analysis, non-parametric 
statistics, inference through machine learning, and high 
dimensional hypothesis testing and regression statistics.

� ere are some issues driving the current data chal-
lenges in astronomy. We are in a vastly di� erent data re-
gime in astronomy than we used to be even ten or � � een 
years ago. Over the past three decades, we have been en-
gineered telescopes that are 30 times larger, with detectors 

which are 3,000 times more powerful in terms of pixels. 
� e rise in sensitivity of these detectors (for an example 
the multi- gigapixel cameras which is in line with simi-
lar improvements in homeland defense and intelligence 
systems) is a consequence of Moore’s Law[4]—they can 
collect up to a hundred times more data than was possible 
even just a few years ago. � is exponential increase in-
duces that the collective data of astronomy doubles every 
year, and that can be very tough to capture and analyze.

� e principal driving forces of change of astronomy 
were large digital sky surveys, most notably the Sloan Dig-
ital Sky Survey (SDSS; [5]), but also DPOSS [6], 2MASS 
[7],etc, which have been static surveys of the sky. A new 
wave is coming with the birth of synoptic sky surveys cov-
ering large areas of the sky in repetition (an example is 
CRTS; http:// crts.caltech.edu [8] and planned facilities for 
this decade and beyond, such as the Large Synoptic Sur-
vey Telescope (LSST; [9]) and the Square Kilometer Array 
(SKA [10]). So astronomy is transformed in short period 
of time from a panoramic digital sky-photography to a 
panoramic digital Universe-cinematography. To have a 
more quantitative impression on the data rates of synoptic 
astronomy, a useful is to compare it to the Large Hadron 
Collider (LHC) at CERN. At zenith of its capacity (all four 
experiments are running simultaneously), LHC generates 
~1.8 GB/s and requires the largest distributed comput-
ing network in the world to handle its output. Since the 
network can transfer data at ~1 GB/s, we could use it as a 
� ducial value, denoted as 1 LHC.

TABLE 2 SURVEY DATA RATES IN TERMS OF THE DATA 
RATE OF THE LARGE HADRON COLLIDER (1 LHC = 1 GB/S)

Survey Wavelength
operati on 

start
data rate 

[lHC]

aSKap radio 2012 2.8

GaIa opti cal 2013 0.005

lofar radio 2013 50-200

lSSt opti cal 2018 0.7

SKa radio 2020 ~30000

As can be seen, from Table 2, the real challenge is with 
the new kind of radio surveys. Also, associating and relat-
ing these data to themselves and to other data will increase 
their volume and complexity.

� ese data-extreme surveys de� ne the computational 
frontiers of astronomy in the next decades. Extrapolating 
current disk space growth rates to 2030 the entire LSST 
catalog (~200 TB) can be con� ned onto a single disk with 
plenty of space for associated data. However, conventional 
relational database technology will almost certainly not 
scale comparably. Relational database management sys-
tem (RDBMS) [11] do not perform well beyond ~100 TB 
in size and so alternate solutions, such as the NoSQL class 
of distributed storage technologies for structured data, 
will be necessary for any of the larger surveys. In the con-
text of the CAP (Brewer’s) theorem [12], NoSQL stores 
o� en compromise consistency in favor of availability and 
partition tolerance.
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NoSQL is fundamentally about simple key-value or 
document-style schema (collected key-value pairs in a 
“document” model) as a direct alternative to the explicit 
schema in classical RDBMSs. It allows the informatics en-
gineer to treat things asymmetrically, whereas traditional 
approaches have enforced rigid uniformity across the data 
model. � e reason this is so interesting is because it pro-
vides a di� erent way to deal with changes in data model, 
and for larger data sets it makes interesting opportunities 
to manage volumes and performance.

� ere are also databases that combine two or more of 
following properties: document-oriented databases, key/
value stores, graph databases, column-oriented databases, 
in- memory databases, and other database types. An at-
tempt to better match needs of managing scienti� c data 
is SciDB [13], which is a column-oriented entity (rather 
than row-oriented like a RDBMS) that uses arrays as � rst-
class objects rather than tables but is still ACID.

� e Variety of data in astronomy is important chal-
lenge, because it allows us to discriminate subtle new 
classes of objects (e.g. Class Discovery). Class Discovery 
assumes a distinctive attribute separation and discrimina-
tion of classes. � e separation of classes improves when 
the”correct” criterion are chosen for investigation. To 
a computer scientist, “clustering” is a discovety process 
(see [14], [15]) that groups objects and their similarity is 
maximized within the group, while the similarity between 
objects in di� erent groups is minimized ([16], [17]). In as-
tronomy, we o� en group objects into “populations” with 
distinct properties. � ere is a large overlap between as-
tronomical population and informatics”cluster.”� ere are 
many di� erent types of astronomical populations. If the 
properties discriminating the populations are spatial (po-
sitions on the sky or in space), the populations identi� ed 
may be real physical “clusters” of objects. For example, it 
has been well known that galaxies tend to form “galaxy 
clusters.” Spatial clusters are among very common popu-
lations in astronomy. However, populations with similar 
physical and image parameters may exist both within the 
spatial clusters and independent of them. Similarly, IS 
domain tends to have di� erent type of clustering in their 
cyberspace. Building clustering algorithms for astronomi-
cal data poses a many challenges due to both the charac-
teristics of the data discussed as well as the types of the 
desired clusters. � e clusters may be of variable sizes and 
densities, and of arbitrary shapes. For spatial clustering, 
algorithms have mostly a dynamic-modeling approach to 
measure the similarity between two clusters. Two clusters 
are merged in the case when the discrepancy of param-
eter values between the clusters is comparable to the in-
ternal scatter of the parameter values within each cluster. 
An example of such a clustering algorithm is Chameleon 
[18]. Another approach to the problem of identifying as-
tronomical populations is unsupervised clustering: for 
example, the expectation maximization (EM) algorithm 
with mixture models to detect groups of interest, making 
descriptive summaries, and building density estimates for 
large data sets. Moreover, it would be of great opportunity 
using genetic algorithms to devise improved detection 
and supervised classi� cation methods. � is would be es-

pecially interesting in the case of interaction between the 
image (pixel) and catalog (attribute) domains. Clustering 
techniques could be used to detect rare, or in certain way 
unusual objects, e.g., as outliers in the parameter space, to 
be selected for further investigation. It is also possible to 
use semi-autonomous arti� cial intelligence (AI) or so� -
ware agents to explore the large data parameter spaces and 
report on the occurrences of unusual instances or classes 
of objects. All mentioned is also importnat for IS data ex-
ploration.

� e exploration of observable parameter spaces (OPS), 
created by combining of large sky surveys over a range 
of wavelengths will be one of main scienti� c purposes 
of astronomy. A complete observable parameters space 
axes include the object coordinates (positioning domain), 
velocities or redshi� s, � uxes at a range of wavelength 
(spectrophotometric domain), and the measured time 
(MJD, UTC, time domain) etc (see [19]). We will notice 
that these domains are exactly domains of IS survey too. 
Astronomy and IS surveys cover some solid angle, over 
some wavelength range and with some dynamical range of 
� uxes (see Fig. 1). So, it is not the physical realm we want 
to study, actually it is parameter space embedded in cyber 
space. In the cyberspace, the data can be viewed as a set of 
n points or vectors in an m- dimensional parameter space. 
� e magnitude of range of n could be many millions or 
billions and m could be within the range of few tens to 
hundreds and thousands. As we already mentioned possi-
bilities of clustering algorithms, the data may be clustered 
in k statistically distinct classes, which could be modeled. 
� is is a computationally high non trivial problem. How-
ever, not all parameters may be equally important, and 
lowering dimensionality of set of parameters would be an 
important task.

Figure 1. A schematic illustration of the observable param-
eter space of astronomy and IS.All axes are measured inde-
pendently and they ar mutually orthogonal. Note that here 

is depicted non electromagnetic channels such as neutrinos, 
which parameter space is Hillas plane (RxB, where R is size 
of acceleration region and B is typical magnetic field of the 

source). Other non- electromagnetic channels, such as gravity 
waves parameter space, are not given.

Techniques such as automated pattern recognition and 
classi� cation tools could be used to discover sources with 
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particular image morphology, or to employ AI techniques 
to search through panoramic images (from multiple wave-
lengths) for unusual image patterns. � e typical search of 
such databases is not possible with traditional indexing 
technique (established with relational databases) since it 
is impossible to build an index on all possible linear com-
binations of attributes. However, what is possible is using 
the data as geometric objects (points) in the k dimensional 
space. So data can be quantazied into containers (collect-
ing objects of similar properties)

Beside this, both astronomy and IS needs common ref-
erence frame for the sky and earth respectively which can 
be used by di� erent astronomical/IS databases, making 
easy cross- referencing among the catalogues. � is prob-
lem in astronomy was adressed in the study [20], which 
suggested hierarchical subdivisions (starting from octa-
hedron base set,each spherical triangle can be recursively 
divided into 4 sub-triangles of approximately equal areas. 
Each subarea can be divided into additional sub-areas, 
etc.). Using such 3D Cartesian representation of angu-
lar coordinates simpli� es � nding objects within certain 
spherical distance-just by testing linear combinations of 
3D coordinates. So tessellation and Cartesian coordinates 
merge into e�  cient storage. � e SDSS implemented this 
algorithm. In such a way, the scienti� c databases will be 
the “virtual sky” that astronomers will study and mine.

It is well known, that new scienti� c understanding will 
� ow from the discovered knowledge, which is derived 
from the avalanche of information content, which is ex-
tracted from the massive data collections. Knowledge dis-
covery in databases (KDD ,[13]) is the process of extract-
ing useful knowledge from data. In the process of data 
mining, the application of speci� c algorithms to discover 
rare or previously unknown types of object or phenome-
non, is a particular step. KDD is inherently interactive and 
iterative. Common KDD functions are classi� cation, clus-
ter analysis, and regression. � ere are several astronomy-
speci� c data mining projects such as: AstroWeka (http://
astroweka.sourceforge.net/), Grist (Grid Data Mining 
for Astronomy; http://grist.caltech.edu), the Laboratory 
for Cosmological Data Mining http:// lcdm.astro.illinois.
edu), the LSST Data Mining Research study group ([21]), 
the Transient Classi� cation Project at Berkeley [22], and 
Palomar Transient Factory (http:// www.ptf.caltech.edu/
iptf).

� ere are various algorithms developed and used as 
data mining tools in astronomy: Bayesian Analysis for 
example to separate galaxies from stars among the many 
thousands of objects detected in large images; Decision 
Trees - used in the identi� cation of cosmic ray pollution 
in astronomical CCD images; Neural Networks - more 
recently applied in the classi� cation of di� erent galaxy 
types within large databases of galaxy data ; Support Vec-
tor Machines (SVM) - used in the determination of the 
photometric redshi�  estimate for distant galaxies or for 
forecasting solar � ares and solar wind-induced geostorms. 
Also, some other other methods have been applied to as-
tronomical data mining including principal component 
analysis (PCA), kernel regression, random forests, and 
various nearest- neighbor methods

The case of Intelligence and Security (IS)

� ere is agreement in opinions that the threats we 
could expect have expanded beyond the typical military 
or counter- intelligence threats of the past, especially those 
of the Cold War. � is enlarged range of threat falls into 
a major category and two sub-categories. � e major cat-
egory can be marked as ‘non-conventional’ threats, those 
that do not fall into the state- on-state category. � ey in-
clude environmental threats, threats of pandemic disease, 
terrorism and transnational crime.� is broad class of non-
conventional threat can be divided between those threats 
of a human agency (terrorism, crime, people smuggling 
and tra�  cking) and those of a non-human agency (climate 
change and other types of environmental threat, natural 
disasters, pandemic disease). � ese two sub-categories are, 
however, closely linked, as demonstrated by [23] .

Law enforcement work has always handled large 
amounts of information in the form of textual data: for 
example case notes and reports. Dealing with unexpected 
kinds of data and investigating potential connections be-
tween disparate facts or elements are characteristics that 
are not well supported by current technology. As we al-
ready emphasized, information technology (IT) has been 
supported the storage, acquisition and analysis of the data 
through the use of record-based structures, o� en in rela-
tional database systems [11].

Such design is inappropriate when it is not possible 
to know all the types of information that may need to be 
stored. Also, particularly important in the context of in-
telligence analysis, is that record-based databases tend to 
obscure possible connections among the entities and facts. 
� e record formats used by any usual application could 
be both very di� erent and complex and it is di�  cult to 
develop general- purpose so� ware that can explore the 
relations that is implicit in the data.� ere are other issues 
that remain unresolved in the storage and exploitation of 
intelligence: how to represent levels of certainty (which as 
also problem in astronomy) and the fact that much of the 
intelligence gathered may be contradictory or of doubt-
ful origin. Another major issue, which was already men-
tioned in the case of astronomy, is the collation step in 
intelligence cycle and combination of data from a variety 
of di� erent database designs.

It is very important to note that relational database 
systems are the best solution for many types of problems, 
especially when data is highly structured and volume is 
less than 10 terabytes. However, a new class of problem is 
emerging when dealing with large amount of data of vol-
umes greater than 10 terabytes. Although relational data-
base architectures are capable of running in a Data Cloud, 
many current such database systems fail in the Data Cloud 
in following manners. First, beside limitations in volume, 
such database requires highly specialized components to 
ful� ll all the time small amount of increasing in scale. Sec-
ond, and critically important to Intelligence Analysis, is 
the object-relational impedance mismatch that occurs as 
complex data is normalized into a relational table format.

� ere are investigation of exploit cloud computing for 
astronomy, which conclusions could be applied to IS due 
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to similarity of data. A team of astronomers [24], demon-
strated the calculation of an large set of periodograms of 
light curves obtained by the Kepler mission, as an example 
of how the Amazon cloud can be used to generate a new 
science product. Although the costs presented in their 
study were low, these costs can grow signi� cantly as the 
number of curves grows, or as the set of search parameters 
are enlarged. � ey concluded that commercial clouds may 
not be best solution for large- scale computations, due to 
applications that are best suited for commercial clouds are 
those that are processing- and memory- intensive. On the 
other hand commercial clouds applications that are I/O-
intensive, which are the most suitable for astronomy and 
IS where is o� en involved processing large quantities of 
image data, they are uneconomical to run because of the 
high cost of data transfer and storage. � ey require high-
throughput networks and parallel � le systems to achieve 
best performance.

Despite the high costs of using clouds, the virtualiza-
tion technologies used in commercial clouds could be 
more e�  cient for astronomy and IS when they are used 
within a data center. � ere is now a movement towards 
providing academic clouds, such as those being built by 
FutureGrid (http://futuregrid.org/) or the US National 
Energy Research Scienti� c Computing Center (NERSC) 
(http: //www.nersc.gov/ nusers/systems/magellan/) that 
will build virtual environment capabilities to the scienti� c 
community. Also, the CADC (Canadian Astronomy Data 
Center) is adjusting its entire operation to an academic 
cloud called CANFAR (Canadian Advanced Network for 
Astronomical Research), “an operational system for the 
delivery, processing, storage, analysis, and distribution of 
very large astronomical datasets. � e goal of CANFAR is 
to support large Canadian astronomy projects.” To our 
knowledge, this is pioneering astronomy archive that has 
migrated to cloud technologies. It can be considered as a 
protomodel of the archive of the future, and consequently 
its performance should be monitored by large the com-
munity of potential users. Also, we believe that this solu-
tions could be applied on IS databases.

ANALOGIES BETWEEN IS AND ASTRONOMICAL 
DATABASES

Comparing astronomical with IS database demands, 
there exist tremendous analogies between two disciplines 
which we summarized in Table 3.

We know that pipeline image processing of the data 
streams in astronomy and IS databases will be possible 
using parallel processors. More interesting challenges 
are presented by the archiving and mining tasks. Stor-
age technology is rapidly evolving, so that keeping all the 
data online will almost certainly be possible. What is more 
important, we need now to discover ways to search for 
correlations in the resulting massive database. While the 
required data hardware and so� ware for the key science 
programs present challenges, assuring opportunity for un-
anticipated science using such huge databases presents an 
even grater challenge. Designing optimal data handling 
and search routines will be an exciting demand. Cra� ing 
the so� ware pipeline and developing e�  cient database 

management tools and the algorithms for data mining 
will present more of a challenge than the pre- processing 
computational capacity. � e demands of this post- pro-
cessing will be hardware and so� ware intensive. � e e� ort 
invested in so� ware, data system design, tools for visualiz-
ing and analyzing data, and the science data analysis, may 
be comparable to that spent on instruments.

TABLE 3 ANALOGIES BETWEEN ASTRONOMICAL AND 
IS DATABASES CHALLENGES

� e enormity of these astronomy and IS data sets cre-
ates statistical challenges beyond the computational. For 
example, many statistical techniques used by astrono-
mers today have been optimized to deal with the small 
size of existing data sets. In order to fully understand and 
characterize the data, higher-order correlations are o� en 
necessary [25]. Unfortunately, directly computing the n 
point correlation function (npcf) is extremely computa-
tionally expensive. A direct computation of the npcf will 
require enumerating all possible n-tuples of data points. 
Since there are O(Nn) n-tuples for N data points, this is 
prohibitively expensive for even modest-sized data sets 
and low- orders of correlation. So, algorithms which scale 
much worse than linearly will be unacceptable computa-
tionally. At the same time, the main source of errors will 
be various systematic e� ects.We should think to develop 
approximate statistical techniques, where the approxima-
tion is within some boundaries, which algorithm has a 
non-polynomial scaling.Furthermore, regardless the size 
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of the data set, there will always be features and scales for 
which the estimation error will be important, so the need 
for developing statistically e�  cient estimation schemes 
and methods for assessing estimation error will always 
remain. Combining statistical e�  ciency with computa-
tional e�  ciency will be a constant challenge, since the 
more statistically accurate estimation methods will of-
ten be the most computationally intensive. Up to now, 
in astronomy potentially devastating near-Earth objects 
go undetected. However new techniques of extracting 
relevant image parameters can be used on the petascale 
imaging data to automatically � nd such objects. Similar 
image-mining techniques can be very relevant in IS in-
vestigation as well. Finally, data visualization will present 
an impressive challenge. E�  cient methods for statistical 
visualization and sampling of large databases are required. 
User- recon� gurable trees of image feature catalogs driv-
ing multi-dimensional displays could help, but the oppor-
tunities here are largely unexplored.

CONCLUSION

We analyzed challenges and opportunities of new gen-
eration astronomical databases and IS databases. In the 
sense of data characteristics, they both face the informa-
tion avalnche and information overload problem. In the 
sense of technology development, they both are search-
ing for new paths, methodologies, and innovative use of 
existing techniques. In terms of scienti� c contributions, 
they both may add new insights and knowledge to various 
academic disciplines.

Having on mind the unique challenges (and associated 
opportunities) of information overload and the pressing 
need for advanced criminal and intelligence analyses 
and investigations, we believe that the Knowledge Dis-
covery from Databases (KDD) methodology [17], which 
has achieved signi� cant success in other information-in-
tensive, knowledge- critical domains including business, 
engineering, biology, astronomy, physics and medicine, 
could be critical in addressing the challenges and prob-
lems facing IS databases.
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